Solveeit Logo

Question

Question: Evaluate the value of \(\int {x\log \left( {1 + x} \right)dx} \) A. \(\dfrac{{\left( {2{x^2} + 2}...

Evaluate the value of xlog(1+x)dx\int {x\log \left( {1 + x} \right)dx}
A. (2x2+2)ln(x+1)x2+2x4+C\dfrac{{\left( {2{x^2} + 2} \right)\ln \left( {x + 1} \right) - {x^2} + 2x}}{4} + C
B. (2x2+2)ln(x+1)x22x2+C\dfrac{{\left( {2{x^2} + 2} \right)\ln \left( {x + 1} \right) - {x^2} - 2x}}{2} + C
C. (2x22)ln(x+1)x2+2x4+C\dfrac{{\left( {2{x^2} - 2} \right)\ln \left( {x + 1} \right) - {x^2} + 2x}}{4} + C
D. (2x22)ln(x+1)x2+4x2+C\dfrac{{\left( {2{x^2} - 2} \right)\ln \left( {x + 1} \right) - {x^2} + 4x}}{2} + C

Explanation

Solution

Firstly, let I=xlog(1+x)dxI = \int {x\log \left( {1 + x} \right)dx} .
Then, find the value of integral using the formula f(x)g(x)dx=f(x)g(x)dx[ddxf(x)g(x)dx]dx\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right) \cdot \int {g\left( x \right)dx} } \right]dx} , here f(x)=log(1+x)f\left( x \right) = \log \left( {1 + x} \right) and g(x)=xg\left( x \right) = x .
Thus, solve it further and choose the correct answer.

Complete step-by-step answer:
Here, we have to find the value of xlog(1+x)dx\int {x\log \left( {1 + x} \right)dx} .
Let I=xlog(1+x)dxI = \int {x\log \left( {1 + x} \right)dx}
Since, we know that the integral of the product of two functions f(x)f\left( x \right) and g(x)g\left( x \right) is f(x)g(x)dx=f(x)g(x)dx[ddxf(x)g(x)dx]dx\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right) \cdot \int {g\left( x \right)dx} } \right]dx} .
So, we will find the integral of I, by using the above formula, where f(x)=log(1+x)f\left( x \right) = \log \left( {1 + x} \right) and g(x)=xg\left( x \right) = x .
I=log(1+x)xdx[ddxlog(1+x)xdx]dx\Rightarrow I = \log \left( {1 + x} \right) \cdot \int {xdx} - \int {\left[ {\dfrac{d}{{dx}}\log \left( {1 + x} \right) \cdot \int {xdx} } \right]dx}
I=x22log(1+x)11+x×x22dx\Rightarrow I = \dfrac{{{x^2}}}{2}\log \left( {1 + x} \right) - \int {\dfrac{1}{{1 + x}} \times \dfrac{{{x^2}}}{2}dx}
I=x22log(1+x)12x2x+1dx\Rightarrow I = \dfrac{{{x^2}}}{2}\log \left( {1 + x} \right) - \dfrac{1}{2}\int {\dfrac{{{x^2}}}{{x + 1}}dx} … (1)
Let, x2x+1dx=I1\int {\dfrac{{{x^2}}}{{x + 1}}dx} = {I_1}
I1=x2x+1dx\Rightarrow {I_1} = \int {\dfrac{{{x^2}}}{{x + 1}}dx}
=x21+1x+1dx =x21x+1dx+1x+1dx =(x+1)(x1)x+1dx+log(1+x) =(x1)dx+log(1+x) =x22x+log(1+x)+C  = \int {\dfrac{{{x^2} - 1 + 1}}{{x + 1}}dx} \\\ = \int {\dfrac{{{x^2} - 1}}{{x + 1}}dx} + \int {\dfrac{1}{{x + 1}}dx} \\\ = \int {\dfrac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{x + 1}}dx} + \log \left( {1 + x} \right) \\\ = \int {\left( {x - 1} \right)dx} + \log \left( {1 + x} \right) \\\ = \dfrac{{{x^2}}}{2} - x + \log \left( {1 + x} \right) + C \\\
Thus, I1=x22x+log(1+x)+C{I_1} = \dfrac{{{x^2}}}{2} - x + \log \left( {1 + x} \right) + C .
Now, substitute the value of I1=x22x+log(1+x){I_1} = \dfrac{{{x^2}}}{2} - x + \log \left( {1 + x} \right) in equation (1).
I=x22log(1+x)12[x22x+log(1+x)]+C\Rightarrow I = \dfrac{{{x^2}}}{2}\log \left( {1 + x} \right) - \dfrac{1}{2}\left[ {\dfrac{{{x^2}}}{2} - x + \log \left( {1 + x} \right)} \right] + C
I=x22log(1+x)12(x22x)12log(1+x)+C\Rightarrow I = \dfrac{{{x^2}}}{2}\log \left( {1 + x} \right) - \dfrac{1}{2}\left( {\dfrac{{{x^2}}}{2} - x} \right) - \dfrac{1}{2}\log \left( {1 + x} \right) + C
I=(x21)×12log(1+x)12(x22x2)+C\Rightarrow I = \left( {{x^2} - 1} \right) \times \dfrac{1}{2}\log \left( {1 + x} \right) - \dfrac{1}{2}\left( {\dfrac{{{x^2} - 2x}}{2}} \right) + C
I=(x212)log(1+x)(x22x4)+C\Rightarrow I = \left( {\dfrac{{{x^2} - 1}}{2}} \right)\log \left( {1 + x} \right) - \left( {\dfrac{{{x^2} - 2x}}{4}} \right) + C
Now, taking LCM
I=2(x21)log(1+x)(x22x)4+C\Rightarrow I = \dfrac{{2\left( {{x^2} - 1} \right)\log \left( {1 + x} \right) - \left( {{x^2} - 2x} \right)}}{4} + C
I=(2x22)log(1+x)x2+2x4+C\Rightarrow I = \dfrac{{\left( {2{x^2} - 2} \right)\log \left( {1 + x} \right) - {x^2} + 2x}}{4} + C
Thus, we get xlog(1+x)dx=(2x22)log(1+x)x2+2x4+C\Rightarrow \int {x\log \left( {1 + x} \right)dx} = \dfrac{{\left( {2{x^2} - 2} \right)\log \left( {1 + x} \right) - {x^2} + 2x}}{4} + C .
So, option (C) is correct.

Note: The formula for integration by parts is given by f(x)g(x)dx=f(x)g(x)dx[ddxf(x)g(x)dx]dx\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right) \cdot \int {g\left( x \right)dx} } \right]dx} .
In the formula for integration by parts, f(x)f\left( x \right) and g(x)g\left( x \right) are chosen by the method of ILATE.
ILATE is known as Inverse trigonometric functions, Logarithm functions, Algebraic functions, Trigonometric functions and Exponential functions.
The function f(x)f\left( x \right) must be a function lying before the function g(x)g\left( x \right) in the ILATE rule.
In the given question, we chose f(x)=log(1+x)f\left( x \right) = \log \left( {1 + x} \right) and g(x)=xg\left( x \right) = x , because log(1+x)\log \left( {1 + x} \right) is a logarithm function and x is an algebraic function and in ILATE rule logarithm functions lie before algebraic functions.