Solveeit Logo

Question

Question: Evaluate the value of \(\int {{{\tan }^4}xdx} \) ....

Evaluate the value of tan4xdx\int {{{\tan }^4}xdx} .

Explanation

Solution

Here, we are asked to find the value of tan4xdx\int {{{\tan }^4}xdx} .
Let, I=tan4xdxI = \int {{{\tan }^4}xdx} and write tan4x{\tan ^4}x as tan2xtan2x{\tan ^2}x \cdot {\tan ^2}x .
Then, put tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1 in any one of the values.
Thus, solve the value of I further to get the required answer.

Complete step by step solution:
Here, we are asked to find the value of tan4xdx\int {{{\tan }^4}xdx} .
Let, I=tan4xdxI = \int {{{\tan }^4}xdx} .
Now, we can write tan4x{\tan ^4}x as tan2xtan2x{\tan ^2}x \cdot {\tan ^2}x
I=tan2xtan2xdx\therefore I = \int {{{\tan }^2}x \cdot {{\tan }^2}xdx}
Also, we know that tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1
I=tan2x(sec2x1)dx\therefore I = \int {{{\tan }^2}x\left( {{{\sec }^2}x - 1} \right)dx}
I=(tan2xsec2xtan2x)dx\therefore I = \int {\left( {{{\tan }^2}x{{\sec }^2}x - {{\tan }^2}x} \right)dx}
I=tan2xsec2xdxtan2xdx I=tan2xsec2xdx(sec2x1)dx I=tan2xsec2xdxsec2xdx+dx I=tan2xsec2xdxsec2xdx+x+C  \therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\tan }^2}xdx} \\\ \therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {\left( {{{\sec }^2}x - 1} \right)dx} \\\ \therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + \int {dx} \\\ \therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + x + C \\\
Now, to solve further, let tanx=t\tan x = t
sec2xdx=dt\therefore {\sec ^2}xdx = dt
I=t2dtdt+x+C\therefore I = \int {{t^2}dt} - \int {dt} + x + C
I=t33t+x+C\therefore I = \dfrac{{{t^3}}}{3} - t + x + C
Now, we shall return back the substituted value tanx=t\tan x = t in the above equation.
I=tan3x3tanx+x+C\therefore I = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C

Thus, tan4xdx=tan3x3tanx+x+C\int {{{\tan }^4}xdx} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C.

Note:
Alternate method:
Here, we are asked to find the value of tan4xdx\int {{{\tan }^4}xdx} .
Let, I=tan4xdxI = \int {{{\tan }^4}xdx} .
Now, I=(tan4x+11)dxI = \int {\left( {{{\tan }^4}x + 1 - 1} \right)dx}
I=(tan4x1)dx+1dx I=(tan2x1)(tan2x+1)dx+x+C  \therefore I = \int {\left( {{{\tan }^4}x - 1} \right)dx} + \int {1dx} \\\ \therefore I = \int {\left( {{{\tan }^2}x - 1} \right)\left( {{{\tan }^2}x + 1} \right)dx} + x + C \\\
Since, tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x
I=sec2x(tan2x1)dx+x+C\therefore I = \int {{{\sec }^2}x\left( {{{\tan }^2}x - 1} \right)dx} + x + C
I=tan2xsec2xdxsec2xdx+x+C\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + x + C
Now, to solve further, let tanx=t\tan x = t
sec2xdx=dt\therefore {\sec ^2}xdx = dt
I=t2dtdt+x+C\therefore I = \int {{t^2}dt} - \int {dt} + x + C
I=t33t+x+C\therefore I = \dfrac{{{t^3}}}{3} - t + x + C
Now, we shall return back the substituted value tanx=t\tan x = t in the above equation.
I=tan3x3tanx+x+C\therefore I = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C
Thus, tan4xdx=tan3x3tanx+x+C\int {{{\tan }^4}xdx} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C .