Question
Question: Evaluate the value of \(\int {{{\tan }^4}xdx} \) ....
Evaluate the value of ∫tan4xdx .
Solution
Here, we are asked to find the value of ∫tan4xdx .
Let, I=∫tan4xdx and write tan4x as tan2x⋅tan2x .
Then, put tan2x=sec2x−1 in any one of the values.
Thus, solve the value of I further to get the required answer.
Complete step by step solution:
Here, we are asked to find the value of ∫tan4xdx .
Let, I=∫tan4xdx .
Now, we can write tan4x as tan2x⋅tan2x
∴I=∫tan2x⋅tan2xdx
Also, we know that tan2x=sec2x−1
∴I=∫tan2x(sec2x−1)dx
∴I=∫(tan2xsec2x−tan2x)dx
∴I=∫tan2xsec2xdx−∫tan2xdx ∴I=∫tan2xsec2xdx−∫(sec2x−1)dx ∴I=∫tan2xsec2xdx−∫sec2xdx+∫dx ∴I=∫tan2xsec2xdx−∫sec2xdx+x+C
Now, to solve further, let tanx=t
∴sec2xdx=dt
∴I=∫t2dt−∫dt+x+C
∴I=3t3−t+x+C
Now, we shall return back the substituted value tanx=t in the above equation.
∴I=3tan3x−tanx+x+C
Thus, ∫tan4xdx=3tan3x−tanx+x+C.
Note:
Alternate method:
Here, we are asked to find the value of ∫tan4xdx .
Let, I=∫tan4xdx .
Now, I=∫(tan4x+1−1)dx
∴I=∫(tan4x−1)dx+∫1dx ∴I=∫(tan2x−1)(tan2x+1)dx+x+C
Since, tan2x+1=sec2x
∴I=∫sec2x(tan2x−1)dx+x+C
∴I=∫tan2xsec2xdx−∫sec2xdx+x+C
Now, to solve further, let tanx=t
∴sec2xdx=dt
∴I=∫t2dt−∫dt+x+C
∴I=3t3−t+x+C
Now, we shall return back the substituted value tanx=t in the above equation.
∴I=3tan3x−tanx+x+C
Thus, ∫tan4xdx=3tan3x−tanx+x+C .