Solveeit Logo

Question

Question: Evaluate the value of \(\int {{{\sin }^5}xdx} \)....

Evaluate the value of sin5xdx\int {{{\sin }^5}xdx} .

Explanation

Solution

Here, we are asked to find the value of sin5xdx\int {{{\sin }^5}xdx} .
Let I=sin5xdxI = \int {{{\sin }^5}xdx} and write sin5x{\sin ^5}x as sin4x×sinx{\sin ^4}x \times \sin x.
Then, sin4x{\sin ^4}x can be written as (sin2x)2{\left( {{{\sin }^2}x} \right)^2} and sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x.
Thus, solve the question further to get the required answer.

Complete step by step solution:
Here, we are asked to find the value of sin5xdx\int {{{\sin }^5}xdx} .
Let I=sin5xdxI = \int {{{\sin }^5}xdx} .
Now, we can write sin5x{\sin ^5}x as sin4x×sinx{\sin ^4}x \times \sin x .
I=sin4x×sinxdx\therefore I = \int {{{\sin }^4}x \times \sin xdx}
Also, sin4x{\sin ^4}x can be written as (sin2x)2{\left( {{{\sin }^2}x} \right)^2} .
I=(sin2x)2sinxdx\therefore I = \int {{{\left( {{{\sin }^2}x} \right)}^2}\sin xdx}
Applying the property sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x in the above value of I.
I=(1cos2x)2sinxdx\therefore I = \int {{{\left( {1 - {{\cos }^2}x} \right)}^2}\sin xdx}
Now, to solve further, let cosx=t\cos x = t
sinxdx=dt sinxdx=dt  \therefore - \sin xdx = dt \\\ \therefore \sin xdx = - dt \\\
I=(1t2)2dt I=(12t2+t4)dt I=dt+2t2dtt4dt I=t+2t33t55+C I=t552t33t+C  \therefore I = - \int {{{\left( {1 - {t^2}} \right)}^2}dt} \\\ \therefore I = - \int {\left( {1 - 2{t^2} + {t^4}} \right)dt} \\\ \therefore I = - \int {dt} + 2\int {{t^2}dt} - \int {{t^4}dt} \\\ \therefore I = - t + 2\dfrac{{{t^3}}}{3} - \dfrac{{{t^5}}}{5} + C \\\ \therefore I = - \dfrac{{{t^5}}}{5} - \dfrac{{2{t^3}}}{3} - t + C \\\
Now, returning back the value of t as cosx\cos x .

I=cos5x5+2cos3x3cosx+C\therefore I = - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{2{{\cos }^3}x}}{3} - \cos x + C
Thus, sin5xdx=cos5x5+2cos3x3cosx+C\int {{{\sin }^5}xdx} = - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{2{{\cos }^3}x}}{3} - \cos x + C.

Note:
Some properties of definite integration:

  1. abf(x)dx=ab(a+bf(x))dx\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\left( {a + b - f\left( x \right)} \right)dx} }
  2. aaf(x)dx=aaf(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_a^{ - a} {f\left( x \right)dx}
  3. abkxdx=kabxdx\int\limits_a^b {kxdx = } k\int\limits_a^b {xdx}
  4. aaf(x)dx=0\int\limits_a^a {f\left( x \right)dx = } 0
    abf(x)dx=baf(x)dx\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx}