Question
Question: Evaluate the value of \(\int {{{\sin }^5}xdx} \)....
Evaluate the value of ∫sin5xdx.
Solution
Here, we are asked to find the value of ∫sin5xdx.
Let I=∫sin5xdx and write sin5x as sin4x×sinx.
Then, sin4x can be written as (sin2x)2 and sin2x=1−cos2x.
Thus, solve the question further to get the required answer.
Complete step by step solution:
Here, we are asked to find the value of ∫sin5xdx .
Let I=∫sin5xdx .
Now, we can write sin5x as sin4x×sinx .
∴I=∫sin4x×sinxdx
Also, sin4x can be written as (sin2x)2 .
∴I=∫(sin2x)2sinxdx
Applying the property sin2x=1−cos2x in the above value of I.
∴I=∫(1−cos2x)2sinxdx
Now, to solve further, let cosx=t
∴−sinxdx=dt ∴sinxdx=−dt
∴I=−∫(1−t2)2dt ∴I=−∫(1−2t2+t4)dt ∴I=−∫dt+2∫t2dt−∫t4dt ∴I=−t+23t3−5t5+C ∴I=−5t5−32t3−t+C
Now, returning back the value of t as cosx .
∴I=−5cos5x+32cos3x−cosx+C
Thus, ∫sin5xdx=−5cos5x+32cos3x−cosx+C.
Note:
Some properties of definite integration:
- a∫bf(x)dx=a∫b(a+b−f(x))dx
- −a∫af(x)dx=−a∫−af(x)dx
- a∫bkxdx=ka∫bxdx
- a∫af(x)dx=0
a∫bf(x)dx=−b∫af(x)dx