Question
Question: Evaluate the value of \(\int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx\) . A) \(\dfr...
Evaluate the value of 0∫π1+cos2xxsinxdx .
A) 4π2
B) 2π2
C) 22π2
D) 42π2
Solution
Let I=0∫π1+cos2xxsinxdx
Then, applying the property a∫bxdx=a∫b(a+b−x)dx.
Now add both the equations before property and after property and solve further.
Finally, find I.
Complete step by step solution:
Let I=0∫π1+cos2xxsinxdx … (1)
Now, applying the property a∫bxdx=a∫b(a+b−x)dx in equation (1)
∴I=0∫π1+cos2(π−x)(π−x)sinxdx
=0∫π1+cos2x(π−x)sinxdx … (2)
On adding equation (1) and equation (2), we get
I+I=0∫π1+cos2xxsinxdx+0∫π1+cos2x(π−x)sinxdx ⇒2I=0∫π1+cos2x(π−x+x)sinxdx ⇒2I=0∫π1+cos2xπsinxdx ⇒2I=π0∫π1+cos2xsinxdx
Let cosx=t.
∴−sinxdx=dt
Also, at x=0,t=cos(0)=1 and at x=π,t=cos(π)=−1 .
So, 2I=−π1∫−11+t2dt
Applying the property, −a∫axdx=−a∫−axdx , we get
2I=π−1∫11+t2dt
Thus, option (A) is correct.
Note:
Some properties of definite integration:
a∫bf(x)dx=a∫b(a+b−f(x))dx
−a∫af(x)dx=−a∫−af(x)dx
a∫bkxdx=ka∫bxdx
a∫af(x)dx=0
a∫bf(x)dx=−b∫af(x)dx