Solveeit Logo

Question

Question: Evaluate the value of \(\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} \) ....

Evaluate the value of xsinx1cosxdx\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} .

Explanation

Solution

Here, we are asked to find the value of xsinx1cosxdx\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} .
Let I=xsinx1cosxdxI = \int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} and put cosx=12sin2x2\cos x = 1 - 2{\sin ^2}\dfrac{x}{2} and sinx=2sinx2cosx2\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} .
Then, solve the integral by spitting it in two parts I1{I_1} and I2{I_2} .
Thus, find the required answer of given integral.

Complete step-by-step answer:
Here, we are asked to find the value of xsinx1cosxdx\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} .
Let I=xsinx1cosxdxI = \int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} .
Now, cosx=12sin2x2\cos x = 1 - 2{\sin ^2}\dfrac{x}{2}

I=xsinx1(12sin2x2)dx I=xsinx11+2sin2x2dx I=xsinx2sin2x2dx I=12xsin2x2dx12sinxsin2x2dx  \therefore I = \int {\dfrac{{x - \sin x}}{{1 - \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right)}}dx} \\\ \therefore I = \int {\dfrac{{x - \sin x}}{{1 - 1 + 2{{\sin }^2}\dfrac{x}{2}}}dx} \\\ \therefore I = \int {\dfrac{{x - \sin x}}{{2{{\sin }^2}\dfrac{x}{2}}}dx} \\\ \therefore I = \dfrac{1}{2}\int {\dfrac{x}{{{{\sin }^2}\dfrac{x}{2}}}dx} - \dfrac{1}{2}\int {\dfrac{{\sin x}}{{{{\sin }^2}\dfrac{x}{2}}}dx} \\\

Also, sinx\sin x can be written as 2sinx2cosx22\sin \dfrac{x}{2}\cos \dfrac{x}{2}
I=12xcosec2x2dx122sinx2cosx2sin2x2dx I=12xcosec2x2dx22cosx2sinx2dx I=12xcosec2x2dxcotx2dx  \therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \dfrac{1}{2}\int {\dfrac{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2}}}dx} \\\ \therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \dfrac{2}{2}\int {\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}dx} \\\ \therefore I = \dfrac{1}{2}\int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \int {\cot \dfrac{x}{2}dx} \\\
Let, I1=xcosec2x2dx{I_1} = \int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} and I2=cotx2dx{I_2} = \int {\cot \dfrac{x}{2}dx}
First, we will solve I1{I_1} .
I1=xcosec2x2dx\therefore {I_1} = \int {x{{\operatorname{cosec} }^2}\dfrac{x}{2}dx}
I1=xcosec2x2dx(dxdxcosec2x2dx)dx I1=x(2cotx2)2cotx2dx I1=2xcotx2+2cotx2dx I1=2xcotx2+2lnsinx2×2  \therefore {I_1} = x\int {{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} - \int {\left( {\dfrac{{dx}}{{dx}} \cdot \int {{{\operatorname{cosec} }^2}\dfrac{x}{2}dx} } \right)dx} \\\ \therefore {I_1} = x\left( { - 2\cot \dfrac{x}{2}} \right) - \int { - 2\cot \dfrac{x}{2}dx} \\\ \therefore {I_1} = - 2x\cot \dfrac{x}{2} + 2\int {\cot \dfrac{x}{2}dx} \\\ \therefore {I_1} = - 2x\cot \dfrac{x}{2} + 2\ln \left| {\sin \dfrac{x}{2} \times 2} \right| \\\
Then, we will solve I2{I_2} .
I2=cotx2dx I2=lnsinx2×2  \therefore {I_2} = \int {\cot \dfrac{x}{2}dx} \\\ \therefore {I_2} = \ln \left| {\sin \dfrac{x}{2} \times 2} \right| \\\
Thus, I=12I1I2I = \dfrac{1}{2}{I_1} - {I_2}
I=12[2xcotx2+2ln2sinx2]ln2sinx2+C I=xcotx2+ln2sinx2ln2sinx2+C I=xcotx2+C  \therefore I = \dfrac{1}{2}\left[ { - 2x\cot \dfrac{x}{2} + 2\ln \left| {2\sin \dfrac{x}{2}} \right|} \right] - \ln \left| {2\sin \dfrac{x}{2}} \right| + C \\\ \therefore I = - x\cot \dfrac{x}{2} + \ln \left| {2\sin \dfrac{x}{2}} \right| - \ln \left| {2\sin \dfrac{x}{2}} \right| + C \\\ \therefore I = - x\cot \dfrac{x}{2} + C \\\
Thus, xsinx1cosxdx=xcotx2+C\int {\dfrac{{x - \sin x}}{{1 - \cos x}}dx} = - x\cot \dfrac{x}{2} + C.

Note: In these types of questions, we may not see the answer until the end as the terms cancel out in the end, Hence we should be patient enough to solve these types of questions. Also while doing the substitutions, we must be very careful on the terms dx and dt, as there are high chances that we forgot to change from dx to dt.