Question
Question: Evaluate the value of \[\int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]...
Evaluate the value of ∫0πlog(1+cosx)dx
Solution
Hint: - Use the property of definite integral ∫02af(x)dx=2∫0af(x)dx, if f(2a−x)=f(x)
, and ∫0af(t)dt=∫0af(a−t)dt. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let I=∫0πlog(1+cosx)dx
As we know (1+cosx)=2cos2(2x)
Substitute this value in the integral
I = ∫0πlog(2cos2(2x))dx
As we know,log(ab)=loga+logb, so apply this property
Now we know loga2=2logaso apply this property
\int_0^\pi {\log 2} dx$$ Now, let $$\dfrac{x}{2} = t.................\left( 1 \right)$$ If $$x = 0 \Rightarrow t = 0$$ If $$x = \pi \Rightarrow t = \dfrac{\pi }{2}$$ Differentiate equation (1) w.r.t.$x$ $$ \Rightarrow dx = 2dt$$ Substitute these values in the integral\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\