Solveeit Logo

Question

Question: Evaluate the value of \(\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}\) ....

Evaluate the value of sin18cos72\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} .

Explanation

Solution

Here, we are asked to find the value of the trigonometric fraction sin18cos72\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} .
Now, use the property sinx=cos(90x)\sin x = \cos \left( {90^\circ - x} \right) and find the value of sin18\sin 18^\circ in the terms of cosine function.
Thus, to get the required answer, substitute the value of sin18\sin 18^\circ in terms of cosine function in the given trigonometric equation.

Complete step-by-step answer:
Here, we are asked to find the value of the trigonometric fraction sin18cos72\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} .
We know the property that, sinx\sin x can also be written as cos(90x)\cos \left( {90^\circ - x} \right) i.e. sinx=cos(90x)\sin x = \cos \left( {90^\circ - x} \right) .
So, using the above property, we can write sin18\sin 18^\circ as cos(9018)\cos \left( {90^\circ - 18^\circ } \right)
sin18=cos(9018)=cos72\therefore \sin 18^\circ = \cos \left( {90^\circ - 18^\circ } \right) = \cos 72^\circ .
Now, we will substitute the value of sin18\sin 18^\circ as cos72\cos 72^\circ in the given trigonometric fraction.
sin18cos72=cos72cos72=1\therefore \dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} = \dfrac{{\cos 72^\circ }}{{\cos 72^\circ }} = 1
Thus, we get the required value of the given trigonometric fraction sin18cos72\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} as 1.

Note: Alternatively, we can also write cos72\cos 72^\circ in the terms of sine function by using the property cosy=cos(90y)\cos y = \cos \left( {90^\circ - y} \right) . Thus, by substituting the value of cos72\cos 72^\circ in terms of sine function in the given trigonometric fraction, we get the required answer.
Some angle properties of trigonometric functions:
(i) sinx=cos(90x)\sin x = \cos \left( {90^\circ - x} \right)
(ii) cosx=sin(90x)\cos x = \sin \left( {90^\circ - x} \right)
(iii) tanx=cot(90x)\tan x = \cot \left( {90^\circ - x} \right)
(iv) sinx=sin(360+x)\sin x = \sin \left( {360^\circ + x} \right)
(v) cosx=cos(360+x)\cos x = \cos \left( {360^\circ + x} \right)
(vi) tanx=tan(360+x)\tan x = \tan \left( {360^\circ + x} \right)