Solveeit Logo

Question

Question: Evaluate the value of \(\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}...

Evaluate the value of (cosxcos3x)(sin8x+sin2x)(sin5xsinx)(cos4xcos6x)\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} .

Explanation

Solution

Here, the given fractional value is (cosxcos3x)(sin8x+sin2x)(sin5xsinx)(cos4xcos6x)\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} and we need to find the value of the given fractional value.
Then, find the values of cosxcos3x\cos x - \cos 3x , sin8x+sin2x\sin 8x + \sin 2x , sin5xsinx\sin 5x - \sin x and cos4xcos6x\cos 4x - \cos 6x by using the formulae given below
sina+sinb=2sin(a+b2)cos(ab2) sinasinb=2cos(a+b2)sin(ab2) cosacosb=2sin(a+b2)sin(ab2)  \sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\\ \sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\\ \cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\\
Thus, substitute the values in the given fraction and find the required answer.

Complete step-by-step answer:
Here, the given fractional value is (cosxcos3x)(sin8x+sin2x)(sin5xsinx)(cos4xcos6x)\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} .
Since, we know that,
sina+sinb=2sin(a+b2)cos(ab2) sinasinb=2cos(a+b2)sin(ab2) cosacosb=2sin(a+b2)sin(ab2)  \sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right) \\\ \sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\\ \cos a - \cos b = - 2\sin \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) \\\
So, we will simplify the term cosxcos3x\cos x - \cos 3x of the fraction as
cosxcos3x=2sin(x+3x2)sin(x3x2) =2sin(4x2)sin(2x2) =2sin2xsin(x) =2sin2xsinx(sin(x)=sinx)  \cos x - \cos 3x = - 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\sin \left( {\dfrac{{x - 3x}}{2}} \right) \\\ = - 2\sin \left( {\dfrac{{4x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\\ = - 2\sin 2x\sin \left( { - x} \right) \\\ = 2\sin 2x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\\
Similarly, repeating the above steps for sin8x+sin2x\sin 8x + \sin 2x , sin5xsinx\sin 5x - \sin x and cos4xcos6x\cos 4x - \cos 6x
So,
sin8x+sin2x=2sin(8x+2x2)cos(8x2x2) =2sin(10x2)cos(6x2) =2sin5xcos3x  \sin 8x + \sin 2x = 2\sin \left( {\dfrac{{8x + 2x}}{2}} \right)\cos \left( {\dfrac{{8x - 2x}}{2}} \right) \\\ = 2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{6x}}{2}} \right) \\\ = 2\sin 5x\cos 3x \\\
sin5xsinx=2cos(5x+x2)sin(5xx2) =2cos(6x2)sin(4x2) =2cos3xsin2x  \sin 5x - \sin x = 2\cos \left( {\dfrac{{5x + x}}{2}} \right)\sin \left( {\dfrac{{5x - x}}{2}} \right) \\\ = 2\cos \left( {\dfrac{{6x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right) \\\ = 2\cos 3x\sin 2x \\\

cos4xcos6x=2sin(4x+6x2)sin(4x6x2) =2sin(10x2)sin(2x2) =2sin5xsin(x) =2sin5xsinx(sin(x)=sinx) \cos 4x - \cos 6x = - 2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\sin \left( {\dfrac{{4x - 6x}}{2}} \right) \\\ = - 2\sin \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{ - 2x}}{2}} \right) \\\ = - 2\sin 5x\sin \left( { - x} \right) \\\ = 2\sin 5x\sin x\left( {\because \sin \left( { - x} \right) = - \sin x} \right) \\\

Thus, we will substitute the values of cosxcos3x\cos x - \cos 3x , sin8x+sin2x\sin 8x + \sin 2x , sin5xsinx\sin 5x - \sin x and cos4xcos6x\cos 4x - \cos 6x in the given fractional value.
(cosxcos3x)(sin8x+sin2x)(sin5xsinx)(cos4xcos6x)=(2sin2xsinx)(2sin5xcos3x)(2cos3xsin2x)(2sin5xsinx)\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = \dfrac{{\left( {2\sin 2x\sin x} \right)\left( {2\sin 5x\cos 3x} \right)}}{{\left( {2\cos 3x\sin 2x} \right)\left( {2\sin 5x\sin x} \right)}}
Here, from the above step it is clear that, every term of the fraction will get eliminated. So, the value of the given fractional value will be 0.
(cosxcos3x)(sin8x+sin2x)(sin5xsinx)(cos4xcos6x)=1\therefore \dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} = 1
Thus, the value of the given fractional value (cosxcos3x)(sin8x+sin2x)(sin5xsinx)(cos4xcos6x)\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}}{{\left( {\sin 5x - \sin x} \right)\left( {\cos 4x - \cos 6x} \right)}} is 1.

Note: While solving questions like these in which many identities are used at once, we should carefully substitute the values in the question because there is a high chance that we mess up with the signs and a change of even one sign is enough to get us a completely wrong answer.