Question
Question: Evaluate the value of \(\dfrac{{\left( {\cos x - \cos 3x} \right)\left( {\sin 8x + \sin 2x} \right)}...
Evaluate the value of (sin5x−sinx)(cos4x−cos6x)(cosx−cos3x)(sin8x+sin2x) .
Solution
Here, the given fractional value is (sin5x−sinx)(cos4x−cos6x)(cosx−cos3x)(sin8x+sin2x) and we need to find the value of the given fractional value.
Then, find the values of cosx−cos3x , sin8x+sin2x , sin5x−sinx and cos4x−cos6x by using the formulae given below
sina+sinb=2sin(2a+b)cos(2a−b) sina−sinb=2cos(2a+b)sin(2a−b) cosa−cosb=−2sin(2a+b)sin(2a−b)
Thus, substitute the values in the given fraction and find the required answer.
Complete step-by-step answer:
Here, the given fractional value is (sin5x−sinx)(cos4x−cos6x)(cosx−cos3x)(sin8x+sin2x) .
Since, we know that,
sina+sinb=2sin(2a+b)cos(2a−b) sina−sinb=2cos(2a+b)sin(2a−b) cosa−cosb=−2sin(2a+b)sin(2a−b)
So, we will simplify the term cosx−cos3x of the fraction as
cosx−cos3x=−2sin(2x+3x)sin(2x−3x) =−2sin(24x)sin(2−2x) =−2sin2xsin(−x) =2sin2xsinx(∵sin(−x)=−sinx)
Similarly, repeating the above steps for sin8x+sin2x , sin5x−sinx and cos4x−cos6x
So,
sin8x+sin2x=2sin(28x+2x)cos(28x−2x) =2sin(210x)cos(26x) =2sin5xcos3x
sin5x−sinx=2cos(25x+x)sin(25x−x) =2cos(26x)sin(24x) =2cos3xsin2x
Thus, we will substitute the values of cosx−cos3x , sin8x+sin2x , sin5x−sinx and cos4x−cos6x in the given fractional value.
∴(sin5x−sinx)(cos4x−cos6x)(cosx−cos3x)(sin8x+sin2x)=(2cos3xsin2x)(2sin5xsinx)(2sin2xsinx)(2sin5xcos3x)
Here, from the above step it is clear that, every term of the fraction will get eliminated. So, the value of the given fractional value will be 0.
∴(sin5x−sinx)(cos4x−cos6x)(cosx−cos3x)(sin8x+sin2x)=1
Thus, the value of the given fractional value (sin5x−sinx)(cos4x−cos6x)(cosx−cos3x)(sin8x+sin2x) is 1.
Note: While solving questions like these in which many identities are used at once, we should carefully substitute the values in the question because there is a high chance that we mess up with the signs and a change of even one sign is enough to get us a completely wrong answer.