Solveeit Logo

Question

Question: Evaluate the sum of the series \({}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+.....+{}^{n}{{C}_{n...

Evaluate the sum of the series nC1+nC2+nC3+.....+nCn{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+.....+{}^{n}{{C}_{n}} equals to
(a)2n1{{2}^{n}}-1
(b)2n{{2}^{n}}
(c)2n+1{{2}^{n}}+1
(d)None of these

Explanation

Solution

Hint : Firstly, we will use the general expansion of the term (1+x)n{{\left( 1+x \right)}^{n}}by using the binomial expansion as (1+x)n=nC0x0+nC1x1+nC2x2+nC3x3+.....+nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}+{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{3}}{{x}^{3}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}. Then, we will substitute x=1 to get the question similar to the expression. Then, we will find the value of the expression nC0{}^{n}{{C}_{0}} by using the formula of the combination as nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}. Then, we get the final answer after rearranging the equation.

Complete step by step solution : In this question, we will use the general expansion of the term (1+x)n{{\left( 1+x \right)}^{n}}by using the binomial expansion which is given by:
(1+x)n=nC0x0+nC1x1+nC2x2+nC3x3+.....+nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}+{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{3}}{{x}^{3}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}
To make the above expression similar to the question, substitute x=1 in the above expression.
By substituting x=1, we get
(1+1)n=nC0(1)0+nC1(1)1+nC2(1)2+nC3(1)3+.....+nCn(1)n 2n=nC0+nC1+nC2+nC3+.....+nCn.......(i) \begin{aligned} & {{\left( 1+1 \right)}^{n}}={}^{n}{{C}_{0}}{{\left( 1 \right)}^{0}}+{}^{n}{{C}_{1}}{{\left( 1 \right)}^{1}}+{}^{n}{{C}_{2}}{{\left( 1 \right)}^{2}}+{}^{n}{{C}_{3}}{{\left( 1 \right)}^{3}}+.....+{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n}} \\\ & \Rightarrow {{2}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+.....+{}^{n}{{C}_{n}}.......\left( i \right) \\\ \end{aligned}
Now, to get the value of nC0{}^{n}{{C}_{0}} is given by the formula of the combination:
nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}
To find the factorial of the number n, multiply the number n with (n-1) till it reaches to 1. To understand let us find the factorial of 4.
4!=4×3×2×1 24 \begin{aligned} & 4!=4\times 3\times 2\times 1 \\\ & \Rightarrow 24 \\\ \end{aligned}
Now, we substitute r=0 in the above formula and get the value of nC0{}^{n}{{C}_{0}}:
nC0=n!(n0)!0! n!n! 1 \begin{aligned} & {}^{n}{{C}_{0}}=\dfrac{n!}{\left( n-0 \right)!0!} \\\ & \Rightarrow \dfrac{n!}{n!} \\\ & \Rightarrow 1 \\\ \end{aligned}
Substituting the value of nC0{}^{n}{{C}_{0}} in equation (i), we get:
2n=1+nC1+nC2+nC3+.....+nCn{{2}^{n}}=1+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+.....+{}^{n}{{C}_{n}}
Now subtracting 1 from the sides of the above equation, we get:
2n1=1+nC1+nC2+nC3+.....+nCn1 2n1=nC1+nC2+nC3+.....+nCn....(ii) \begin{aligned} & {{2}^{n}}-1=1+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+.....+{}^{n}{{C}_{n}}-1 \\\ & \Rightarrow {{2}^{n}}-1={}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+.....+{}^{n}{{C}_{n}}....\left( ii \right) \\\ \end{aligned}
So, equation (ii) gives the final sum of the required series.
Hence, option (a) is correct.

Note : Here, we can make mistakes in taking the value of the 0!0! as most of us take is zero which will lead to the value of nC0{}^{n}{{C}_{0}} as infinity. But, 0!0!is the special case of the factorial that is equal to 1 only. So, instead of taking it as 0 consider nC0{}^{n}{{C}_{0}} as 1 and solve the remaining question accordingly.