Solveeit Logo

Question

Question: Evaluate the limit \(\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\...

Evaluate the limit limxπ42sec2xf(t)dtx2π216\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}
A) 8πf(2)\dfrac{8}{\pi }f(2)
B) 2πf(2)\dfrac{2}{\pi }f(2)
C) 2πf(12)\dfrac{2}{\pi }f\left( \dfrac{1}{2} \right)
D) 2f(2)2f(2)

Explanation

Solution

Hint: See that the limit is of the form 00\dfrac{0}{0} and there is an integral in limit. Use Leibniz Rule and L’Hopital Rule to evaluate the limit.

Let the given limit be equal to LL,
L=limxπ42sec2xf(t)dtx2π216L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt}{{{x}^{2}}-\dfrac{{{\pi }^{2}}}{16}}

If we substitute xx as π4\dfrac{\pi }{4} we get,
L=2sec2π4f(t)dt(π4)2π216L=\dfrac{\mathop{\int }_{2}^{{{\sec }^{2}}\dfrac{\pi }{4}}f\left( t \right)dt}{{{\left( \dfrac{\pi }{4} \right)}^{2}}-\dfrac{{{\pi }^{2}}}{16}}
L=222f(t)dtπ216π216L=\dfrac{\mathop{\int }_{2}^{{{\sqrt{2}}^{2}}}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}
L=22f(t)dtπ216π216L=\dfrac{\mathop{\int }_{2}^{2}f\left( t \right)dt}{\dfrac{{{\pi }^{2}}}{16}-\dfrac{{{\pi }^{2}}}{16}}

We know that aaf(x)dx=0\int\limits_{a}^{a}{f(x)dx=0}. Therefore, the numerator tends to 00.
L=00L=\dfrac{0}{0}
The numerator and denominator tends to zero as xx tends to π4\dfrac{\pi }{4}, so the limit is of the form 00\dfrac{0}{0}. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit. L’Hopital Rule can only be used when the limit is of the form 00\dfrac{0}{0} or\dfrac{\infty }{\infty }.
L=limxπ4ddx(2sec2xf(t)dt)ddx(x2π216)L=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)}{\dfrac{d}{dx}\left( {{x}^{2}}-\dfrac{{{\pi }^{2}}}{16} \right)}

For evaluating the numerator we use Leibniz’s Rule i.e.
\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\\}-\left\\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\\} wherea(x)a'\left( x \right)and b(x)b'\left( x \right)are derivatives of functions a(x)a\left( x \right)and b(x)b\left( x \right) with respect toxx.
ddx(2sec2xf(t)dt)=f(sec2(x)) (2sec2(x)tan(x))(f(2)(0))\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=f\left( se{{c}^{2}}\left( x \right) \right)~\left( 2se{{c}^{2}}\left( x \right)\tan \left( x \right) \right)-\left( f\left( 2 \right)\left( 0 \right) \right)
ddx(2sec2xf(t)dt)=2f(sec2(x))sec2(x))tan(x)\dfrac{d}{dx}\left( \mathop{\int }_{2}^{{{\sec }^{2}}x}f\left( t \right)dt \right)=2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)
So,
L=limxπ42f(sec2(x))sec2(x))tan(x)2xL=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\dfrac{2f\left( se{{c}^{2}}\left( x \right) \right)se{{c}^{2}}\left( x \right))\text{tan}\left( x \right)}{2x}
Now we can simply evaluate the limit by substituting xx asπ4\dfrac{\pi }{4}.
L= !! !! 2f(sec2( !! !! π4))sec2( !! !! π4))tan( !! !! π4)2 ×  !! !! π4\text{L= }\\!\\!~\\!\\!\text{ }\dfrac{2f\left( se{{c}^{2}}\left( \text{ }\\!\\!~\\!\\!\text{ }\dfrac{\pi }{4} \right) \right)se{{c}^{2}}\left( \text{ }\\!\\!~\\!\\!\text{ }\dfrac{\pi }{4} \right))\text{tan}\left( \text{ }\\!\\!~\\!\\!\text{ }\dfrac{\pi }{4} \right)}{2~\times ~\text{ }\\!\\!~\\!\\!\text{ }\dfrac{\pi }{4}}
L= !! !! 2f(2)×2×1π2\text{L= }\\!\\!~\\!\\!\text{ }\dfrac{2f\left( 2 \right)\times 2\times 1}{\dfrac{\pi }{2}}
L= !! !! 8πf(2)\text{L= }\\!\\!~\\!\\!\text{ }\dfrac{8}{\pi }f\left( 2 \right)
So, the answer is Option A) 8πf(2)\dfrac{8}{\pi }f(2)

Note: Students must be careful while using Leibniz Rule and L'Hopital Rule. They might make mistakes by only differentiating the numerator only the denominator only, or not using Leibniz Rule correctly i.e. they might not differentiate the limits, not put the limits correctly, etc. Do not use L'Hopital's Rule multiple times, it may lead to incorrect answers.