Solveeit Logo

Question

Question: Evaluate the limit of the given function: \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin ...

Evaluate the limit of the given function: limx0sin7xsin5x+sin3xsinxsin6xsin4x+sin2x\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}
A) 1 - 1
B) 00
C) 11
D) 22

Explanation

Solution

There are various properties of the limit, that are very useful to evaluate the limit of the functions, some of them are:
limxaf(x)g(x)=limxaf(x)limxag(x)\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}} where limxag(x)0\mathop {\lim }\limits_{x \to a} g(x) \ne 0
limxa[f(x)+g(x)]=limxaf(x)+limxag(x)\mathop {\lim }\limits_{x \to a} [f(x) + g(x)] = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} g(x)
limxa[f(x).g(x)]=limxaf(x).limxag(x)\mathop {\lim }\limits_{x \to a} [f(x).g(x)] = \mathop {\lim }\limits_{x \to a} f(x).\mathop {\lim }\limits_{x \to a} g(x)
limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1

Complete step-by-step solution:
We are given a function f(x)=sin7xsin5x+sin3xsinxsin6xsin4x+sin2xf(x) = \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}} and we are required to evaluate the limit of the function at point 00. That is, we need to find the value of
limx0sin7xsin5x+sin3xsinxsin6xsin4x+sin2x\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}}
Since, the limit of the function sinxx\dfrac{{\sin x}}{x} at point 00 is equal to 11. It can be written as limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1.
To solve the given question, we have to make every term of the from sinax\sin ax in the form sinaxax\dfrac{{\sin ax}}{{ax}}, by multiplying and dividing sinax\sin ax by axax.
Write the given function again by multiplying and dividing sinax\sin ax by axax.
limx07xsin7x7x5xsin5x5x+3xsin3x3xxsinxx6xsin6x6x4xsin4x4x+2xsin2x2x\mathop {\lim }\limits_{x \to 0} \dfrac{{7x\dfrac{{\sin 7x}}{{7x}} - 5x\dfrac{{\sin 5x}}{{5x}} + 3x\dfrac{{\sin 3x}}{{3x}} - x\dfrac{{\sin x}}{x}}}{{6x\dfrac{{\sin 6x}}{{6x}} - 4x\dfrac{{\sin 4x}}{{4x}} + 2x\dfrac{{\sin 2x}}{{2x}}}}
Now, use the Law of limit given by limxaf(x)g(x)=limxaf(x)limxag(x)\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}} where limxag(x)0\mathop {\lim }\limits_{x \to a} g(x) \ne 0
limx0[7xsin7x7x5xsin5x5x+3xsin3x3xxsinxx]limx0[6xsin6x6x4xsin4x4x+2xsin2x2x]\dfrac{{\mathop {\lim }\limits_{x \to 0} \left[ {7x\dfrac{{\sin 7x}}{{7x}} - 5x\dfrac{{\sin 5x}}{{5x}} + 3x\dfrac{{\sin 3x}}{{3x}} - x\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} \left[ {6x\dfrac{{\sin 6x}}{{6x}} - 4x\dfrac{{\sin 4x}}{{4x}} + 2x\dfrac{{\sin 2x}}{{2x}}} \right]}}
Now, use the Law of limit given by limxa[f(x)+g(x)]=limxaf(x)+limxag(x)\mathop {\lim }\limits_{x \to a} [f(x) + g(x)] = \mathop {\lim }\limits_{x \to a} f(x) + \mathop {\lim }\limits_{x \to a} g(x)
limx0[7xsin7x7x]limx0[5xsin5x5x]+limx0[3xsin3x3x]limx0[xsinxx]limx0[6xsin6x6x]limx0[4xsin4x4x]+limx0[2xsin2x2x]\dfrac{{\mathop {\lim }\limits_{x \to 0} \left[ {7x\dfrac{{\sin 7x}}{{7x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {5x\dfrac{{\sin 5x}}{{5x}}} \right] + \mathop {\lim }\limits_{x \to 0} \left[ {3x\dfrac{{\sin 3x}}{{3x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {x\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} \left[ {6x\dfrac{{\sin 6x}}{{6x}}} \right] - \mathop {\lim }\limits_{x \to 0} \left[ {4x\dfrac{{\sin 4x}}{{4x}}} \right] + \mathop {\lim }\limits_{x \to 0} \left[ {2x\dfrac{{\sin 2x}}{{2x}}} \right]}}
Now, use the Law of limit given by limxa[f(x).g(x)]=limxaf(x).limxag(x)\mathop {\lim }\limits_{x \to a} [f(x).g(x)] = \mathop {\lim }\limits_{x \to a} f(x).\mathop {\lim }\limits_{x \to a} g(x) ,
limx07x×limx0[sin7x7x]limx05x×limx0[sin5x5x]+limx03x×limx0[sin3x3x]limx0x×limx0[sinxx]limx06x×limx0[sin6x6x]limx04x×limx0[sin4x4x]+limx02x×limx0[sin2x2x]\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 7x}}{{7x}}} \right] - \mathop {\lim }\limits_{x \to 0} 5x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 5x}}{{5x}}} \right] + \mathop {\lim }\limits_{x \to 0} 3x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 3x}}{{3x}}} \right] - \mathop {\lim }\limits_{x \to 0} x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin x}}{x}} \right]}}{{\mathop {\lim }\limits_{x \to 0} 6x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 6x}}{{6x}}} \right] - \mathop {\lim }\limits_{x \to 0} 4x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 4x}}{{4x}}} \right] + \mathop {\lim }\limits_{x \to 0} 2x \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 2x}}{{2x}}} \right]}}
Since, we know that limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1, so
limx07x×1limx05x×1+limx03x×1limx0x×1limx06x×1limx04x×1+limx02x×1\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x \times 1 - \mathop {\lim }\limits_{x \to 0} 5x \times 1 + \mathop {\lim }\limits_{x \to 0} 3x \times 1 - \mathop {\lim }\limits_{x \to 0} x \times 1}}{{\mathop {\lim }\limits_{x \to 0} 6x \times 1 - \mathop {\lim }\limits_{x \to 0} 4x \times 1 + \mathop {\lim }\limits_{x \to 0} 2x \times 1}}
limx07xlimx05x+limx03xlimx0xlimx06xlimx04x+limx02x\dfrac{{\mathop {\lim }\limits_{x \to 0} 7x - \mathop {\lim }\limits_{x \to 0} 5x + \mathop {\lim }\limits_{x \to 0} 3x - \mathop {\lim }\limits_{x \to 0} x}}{{\mathop {\lim }\limits_{x \to 0} 6x - \mathop {\lim }\limits_{x \to 0} 4x + \mathop {\lim }\limits_{x \to 0} 2x}}
It can be written as
limx0[7x5x+3xx]limx0[6x4x+2x]\dfrac{{\mathop {\lim }\limits_{x \to 0} [7x - 5x + 3x - x]}}{{\mathop {\lim }\limits_{x \to 0} [6x - 4x + 2x]}}
Which further can be written as
limx07x5x+3xx6x4x+2x\mathop {\lim }\limits_{x \to 0} \dfrac{{7x - 5x + 3x - x}}{{6x - 4x + 2x}}
Solve the function,
limx04x4x\mathop {\lim }\limits_{x \to 0} \dfrac{{4x}}{{4x}}
Cancel 4x4x from the numerator and denominator of the above function,
limx01\mathop {\lim }\limits_{x \to 0} 1
Since the limit of a constant is constant itself, that is limxac=c\mathop {\lim }\limits_{x \to a} c = c, where ccis any constant,
limx01=1\mathop {\lim }\limits_{x \to 0} 1 = 1
Hence, we get that limx0sin7xsin5x+sin3xsinxsin6xsin4x+sin2x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin 5x + \sin 3x - \sin x}}{{\sin 6x - \sin 4x + \sin 2x}} = 1.
So, option (C) is the correct answer.

Note: The limit of a function at a point tt in its domain (if it exists) is the value that the function approaches as its argument approaches. If for a function f(x)f(x), we have to find the limit at a point tt, then it is written as limxtf(x)\mathop {\lim }\limits_{x \to t} f(x).