Question
Question: Evaluate the limit of the given function: \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 7x - \sin ...
Evaluate the limit of the given function: x→0limsin6x−sin4x+sin2xsin7x−sin5x+sin3x−sinx
A) −1
B) 0
C) 1
D) 2
Solution
There are various properties of the limit, that are very useful to evaluate the limit of the functions, some of them are:
x→alimg(x)f(x)=x→alimg(x)x→alimf(x) where x→alimg(x)=0
x→alim[f(x)+g(x)]=x→alimf(x)+x→alimg(x)
x→alim[f(x).g(x)]=x→alimf(x).x→alimg(x)
x→0limxsinx=1
Complete step-by-step solution:
We are given a function f(x)=sin6x−sin4x+sin2xsin7x−sin5x+sin3x−sinx and we are required to evaluate the limit of the function at point 0. That is, we need to find the value of
x→0limsin6x−sin4x+sin2xsin7x−sin5x+sin3x−sinx
Since, the limit of the function xsinx at point 0 is equal to 1. It can be written as x→0limxsinx=1.
To solve the given question, we have to make every term of the from sinax in the form axsinax, by multiplying and dividing sinax by ax.
Write the given function again by multiplying and dividing sinax by ax.
x→0lim6x6xsin6x−4x4xsin4x+2x2xsin2x7x7xsin7x−5x5xsin5x+3x3xsin3x−xxsinx
Now, use the Law of limit given by x→alimg(x)f(x)=x→alimg(x)x→alimf(x) where x→alimg(x)=0
x→0lim[6x6xsin6x−4x4xsin4x+2x2xsin2x]x→0lim[7x7xsin7x−5x5xsin5x+3x3xsin3x−xxsinx]
Now, use the Law of limit given by x→alim[f(x)+g(x)]=x→alimf(x)+x→alimg(x)
x→0lim[6x6xsin6x]−x→0lim[4x4xsin4x]+x→0lim[2x2xsin2x]x→0lim[7x7xsin7x]−x→0lim[5x5xsin5x]+x→0lim[3x3xsin3x]−x→0lim[xxsinx]
Now, use the Law of limit given by x→alim[f(x).g(x)]=x→alimf(x).x→alimg(x) ,
x→0lim6x×x→0lim[6xsin6x]−x→0lim4x×x→0lim[4xsin4x]+x→0lim2x×x→0lim[2xsin2x]x→0lim7x×x→0lim[7xsin7x]−x→0lim5x×x→0lim[5xsin5x]+x→0lim3x×x→0lim[3xsin3x]−x→0limx×x→0lim[xsinx]
Since, we know that x→0limxsinx=1, so
x→0lim6x×1−x→0lim4x×1+x→0lim2x×1x→0lim7x×1−x→0lim5x×1+x→0lim3x×1−x→0limx×1
x→0lim6x−x→0lim4x+x→0lim2xx→0lim7x−x→0lim5x+x→0lim3x−x→0limx
It can be written as
x→0lim[6x−4x+2x]x→0lim[7x−5x+3x−x]
Which further can be written as
x→0lim6x−4x+2x7x−5x+3x−x
Solve the function,
x→0lim4x4x
Cancel 4x from the numerator and denominator of the above function,
x→0lim1
Since the limit of a constant is constant itself, that is x→alimc=c, where cis any constant,
x→0lim1=1
Hence, we get that x→0limsin6x−sin4x+sin2xsin7x−sin5x+sin3x−sinx=1.
So, option (C) is the correct answer.
Note: The limit of a function at a point t in its domain (if it exists) is the value that the function approaches as its argument approaches. If for a function f(x), we have to find the limit at a point t, then it is written as x→tlimf(x).