Solveeit Logo

Question

Question: Evaluate the limit: $\lim_{x \to 0} \frac{\sin(3x)}{2x}$...

Evaluate the limit:

limx0sin(3x)2x\lim_{x \to 0} \frac{\sin(3x)}{2x}

Answer

3/2

Explanation

Solution

To evaluate the limit limx0sin(3x)2x\lim_{x \to 0} \frac{\sin(3x)}{2x}, we can use the fundamental trigonometric limit: limθ0sin(θ)θ=1\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1

The given limit is: limx0sin(3x)2x\lim_{x \to 0} \frac{\sin(3x)}{2x}

As x0x \to 0, both the numerator sin(3x)\sin(3x) and the denominator 2x2x approach 00, resulting in an indeterminate form 00\frac{0}{0}.

To apply the standard limit formula, we need the argument of the sine function to be present in the denominator. The argument is 3x3x. So, we need 3x3x in the denominator. We can achieve this by multiplying and dividing by 33:

limx0sin(3x)2x=limx0sin(3x)2x×33\lim_{x \to 0} \frac{\sin(3x)}{2x} = \lim_{x \to 0} \frac{\sin(3x)}{2x} \times \frac{3}{3}

Rearrange the terms to group sin(3x)3x\frac{\sin(3x)}{3x}: =limx0sin(3x)3x×32= \lim_{x \to 0} \frac{\sin(3x)}{3x} \times \frac{3}{2}

Now, we can separate the limit into two parts: =(limx0sin(3x)3x)×(limx032)= \left( \lim_{x \to 0} \frac{\sin(3x)}{3x} \right) \times \left( \lim_{x \to 0} \frac{3}{2} \right)

For the first part, let y=3xy = 3x. As x0x \to 0, y3(0)=0y \to 3(0) = 0. So, the first limit becomes: limy0sin(y)y=1\lim_{y \to 0} \frac{\sin(y)}{y} = 1

The second part is a constant, so its limit is the constant itself: limx032=32\lim_{x \to 0} \frac{3}{2} = \frac{3}{2}

Substitute these values back into the expression: =1×32=32= 1 \times \frac{3}{2} = \frac{3}{2}

Thus, the value of the limit is 32\frac{3}{2}.