Question
Mathematics Question on Definite Integral
Evaluate the limit : limx→2π((x−2π)31∫2πxcos(t31)dt)
A
43π2
B
43π
C
83π2
D
83π
Answer
83π2
Explanation
Solution
Apply L’Hoˆpital’s Rule: The given expression is:limx→2π(x−2π)3∫x2πcos(2t)dt
Differentiate the Numerator and Denominator: Using the Fundamental Theorem of Calculus and L'Hôpital's Rule, we get:
=limx→2π3(x−2π)2x2cos(2x)
Evaluate the Expression as x→2π: As x→2π, substitute appropriate values and simplify the expression:
=83π2
So, the correct option is: 83π2