Solveeit Logo

Question

Question: Evaluate the integral \(\smallint \dfrac{{dx}}{{(x - 1)\sqrt {{x^2} - 1} }} = \) A). \( - \sqrt {\...

Evaluate the integral dx(x1)x21=\smallint \dfrac{{dx}}{{(x - 1)\sqrt {{x^2} - 1} }} =
A). x1x+1+C - \sqrt {\dfrac{{x - 1}}{{x + 1}}} + C
B). x1x2+1+C\sqrt {\dfrac{{x - 1}}{{{x^2} + 1}}} + C
C). x+1x1+C - \sqrt {\dfrac{{x + 1}}{{x - 1}}} + C
D). x2+1x1+C\sqrt {\dfrac{{{x^2} + 1}}{{x - 1}}} + C

Explanation

Solution

The above integral is integrated by using a substitution method. The given integral is of the form dxpq\smallint \dfrac{{dx}}{{p\sqrt q }} where in this question pp is linear and qq is quadratic. Using the substitution method, we will substitute p=1tp = \dfrac{1}{t}.

Complete step-by-step solution:
The given integral is dx(x1)x21\smallint \dfrac{{dx}}{{(x - 1)\sqrt {{x^2} - 1} }}
Here p=(x1)p = (x - 1) and q=x21q = {x^2} - 1
Using substitution method,
We substitute p=1yp = \dfrac{1}{y} ,
i.e., x1=1yx - 1 = \dfrac{1}{y}
Taking 1 - 1 to the other side,
x=1+1yx = 1 + \dfrac{1}{y}
Differentiating this equation with respect to xx,
dx=1y2dydx = - \dfrac{1}{{{y^2}}}dy
Substituting the values of xx and dxdx in the given integral,
=11y(1y+1)21×(1y2)dy= \smallint \dfrac{1}{{\dfrac{1}{y}\sqrt {{{\left( {\dfrac{1}{y} + 1} \right)}^2} - 1} }} \times \left( {\dfrac{{ - 1}}{{{y^2}}}} \right)dy
Taking square of 1+1y1 + \dfrac{1}{y} ,
=11y1y2+2×1y+11×(1y2)dy= \smallint \dfrac{1}{{\dfrac{1}{y}\sqrt {\dfrac{1}{{{y^2}}} + 2 \times \dfrac{1}{y} + 1 - 1} }} \times \left( {\dfrac{{ - 1}}{{{y^2}}}} \right)dy
Canceling yy from numerator and denominator,
=11y2+2×1y+11×(1y)dy= \smallint \dfrac{1}{{\sqrt {\dfrac{1}{{{y^2}}} + 2 \times \dfrac{1}{y} + 1 - 1} }} \times \left( {\dfrac{{ - 1}}{y}} \right)dy
Solving the terms inside the square root,
=11y2+2y×(1y)dy= \smallint \dfrac{1}{{\sqrt {\dfrac{1}{{{y^2}}} + \dfrac{2}{y}} }} \times \left( {\dfrac{{ - 1}}{y}} \right)dy
Multiplying and dividing yy to the term 2y\dfrac{2}{y} ,
=11y2+2yy2×(1y)dy= \smallint \dfrac{1}{{\sqrt {\dfrac{1}{{{y^2}}} + \dfrac{{2y}}{{{y^2}}}} }} \times \left( {\dfrac{{ - 1}}{y}} \right)dy
Since the denominator is same, we can add the numerator term inside the square root,
=11+2yy2×(1y)dy= \smallint \dfrac{1}{{\sqrt {\dfrac{{1 + 2y}}{{{y^2}}}} }} \times \left( {\dfrac{{ - 1}}{y}} \right)dy
We can write the equation as,
=11+2yy2×(1y)dy= \smallint \dfrac{1}{{\dfrac{{\sqrt {1 + 2y} }}{{\sqrt {{y^2}} }}}} \times \left( {\dfrac{{ - 1}}{y}} \right)dy
Taking square root of y2{y^2},
=11+2yy×(1y)dy= \smallint \dfrac{1}{{\dfrac{{\sqrt {1 + 2y} }}{y}}} \times \left( {\dfrac{{ - 1}}{y}} \right)dy
Canceling the yy from numerator and denominator,
=11+2ydy= \smallint \dfrac{{ - 1}}{{\sqrt {1 + 2y} }}dy
Taking the square root term to the numerator,
=(1+2y)12dy= - \smallint {(1 + 2y)^{\dfrac{{ - 1}}{2}}}dy
This integral is of the form (ax+b)n=(ax+b)n+1a(n+1)+c\smallint {(ax + b)^n} = \dfrac{{{{(ax + b)}^{n + 1}}}}{{a(n + 1)}} + c,
Integrating the above equation according to the formula,
=(1+2y)12+12(12+1)+c= \dfrac{{ - {{(1 + 2y)}^{\dfrac{{ - 1}}{2} + 1}}}}{{2\left( {\dfrac{{ - 1}}{2} + 1} \right)}} + c
Solving the denominator ,
=(1+2y)12+12(12)+c= \dfrac{{ - {{(1 + 2y)}^{\dfrac{{ - 1}}{2} + 1}}}}{{2\left( {\dfrac{1}{2}} \right)}} + c
Canceling 22 from numerator and denominator,
=(1+2y)12+11+c= \dfrac{{ - {{(1 + 2y)}^{\dfrac{{ - 1}}{2} + 1}}}}{1} + c
Solving the power of numerator term,
=(1+2y)12+c= - {(1 + 2y)^{\dfrac{1}{2}}} + c
We can write the equation as,
=1+2y+c= - \sqrt {1 + 2y} + c
Substituting the value of y=1x1y = \dfrac{1}{{x - 1}},
=1+2(1x1)+c= - \sqrt {1 + 2\left( {\dfrac{1}{{x - 1}}} \right)} + c
Multiplying and dividing 11 by x1x - 1,
=x1x1+2(1x1)+c= - \sqrt {\dfrac{{x - 1}}{{x - 1}} + 2\left( {\dfrac{1}{{x - 1}}} \right)} + c
Since the denominator is same, we can add the numerator term,
=x1+2x1+c= - \sqrt {\dfrac{{x - 1 + 2}}{{x - 1}}} + c
Solving the numerator part,
=x+1x1+c= - \sqrt {\dfrac{{x + 1}}{{x - 1}}} + c
Therefore, dx(x1)x21=x+1x1+c\smallint \dfrac{{dx}}{{(x - 1)\sqrt {{x^2} - 1} }} = - \sqrt {\dfrac{{x + 1}}{{x - 1}}} + c
The correct option is C. x+1x1+C - \sqrt {\dfrac{{x + 1}}{{x - 1}}} + C.

Note: While canceling the terms from numerator and denominator, one should be careful while doing that as in integration many terms are in the denominator of the denominator and after doing integration, one should not forget to add the constant term as in above problem because no limits were given, constant is a must.