Question
Question: Evaluate the integral of \(x^3\sqrt{1 - x^2}\) with respect to \(x\)...
Evaluate the integral of x31−x2 with respect to x
Answer
−31(1−x2)23+51(1−x2)25+C
Explanation
Solution
Solution (by substitution)
- Let u=1−x2.
- Then du=−2xdx ⟹ xdx=−21du.
- Note x2=1−u.
Rewriting the integral:
∫x31−x2dx=∫x2⋅x⋅u21dx=∫(1−u)u21(xdx)=−21∫(1−u)u21du.Split and integrate termwise:
−21∫(u21−u23)du=−21[32u23−52u25]+C=−31u23+51u25+C.Finally, substitute back u=1−x2:
−31(1−x2)23+51(1−x2)25+C.