Solveeit Logo

Question

Question: Evaluate the integral of \(x^3\sqrt{1 - x^2}\) with respect to \(x\)...

Evaluate the integral of x31x2x^3\sqrt{1 - x^2} with respect to xx

Answer

13(1x2)32+15(1x2)52+C-\frac{1}{3}(1 - x^2)^{\frac{3}{2}} + \frac{1}{5}(1 - x^2)^{\frac{5}{2}} + C

Explanation

Solution

Solution (by substitution)

  1. Let u=1x2u = 1 - x^2.
  2. Then du=2xdxdu = -2x\,dxxdx=12dux\,dx = -\tfrac{1}{2}\,du.
  3. Note x2=1ux^2 = 1 - u.

Rewriting the integral:

x31x2dx=x2xu12dx=(1u)u12(xdx)=12(1u)u12du.\int x^3\sqrt{1 - x^2}\,dx = \int x^2 \cdot x \cdot u^{\tfrac12}\,dx = \int (1 - u)\,u^{\tfrac12}\,\bigl(x\,dx\bigr) = -\tfrac{1}{2}\int (1 - u)\,u^{\tfrac12}\,du.

Split and integrate termwise:

12(u12u32)du=12[23u3225u52]+C=13u32+15u52+C.-\tfrac{1}{2}\int\bigl(u^{\tfrac12} - u^{\tfrac32}\bigr)\,du = -\tfrac{1}{2}\Bigl[\frac{2}{3}u^{\tfrac{3}{2}} - \frac{2}{5}u^{\tfrac{5}{2}}\Bigr] + C = -\tfrac{1}{3}u^{\tfrac{3}{2}} + \tfrac{1}{5}u^{\tfrac{5}{2}} + C.

Finally, substitute back u=1x2u = 1 - x^2:

13(1x2)32+15(1x2)52+C.-\frac{1}{3}(1 - x^2)^{\frac{3}{2}} + \frac{1}{5}(1 - x^2)^{\frac{5}{2}} + C.