Solveeit Logo

Question

Question: Evaluate the integral of the following \[\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \...

Evaluate the integral of the following
ex(1x1x2)dx\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}

Explanation

Solution

Hint:If f(x)f(x) is derivable function of x, then ex[f(x)+f(x)]dx=exf(x)+c\int{{{e}^{x}}\left[ f(x)+f'(x) \right]dx}={{e}^{x}}f(x)+c , where c is the constant of integration. This theorem can be used when the multiple of ex{{e}^{x}} can be expressed asf(x)+f(x)f(x)+f'(x).

Complete step-by-step answer:
Let I=ex(1x1x2)dx..........(1)I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}..........(1)
Comparing the given integral which is represented by the equation (1) with ex[f(x)+f(x)]dx\int{{{e}^{x}}\left[ f(x)+f'(x) \right]dx} , we get
The function f(x)=1xf(x)=\dfrac{1}{x} and the differentiation of the function f(x)f(x) is f(x)=1x2f'(x)=\dfrac{-1}{{{x}^{2}}}
Let exf(x)=ex(1x)=t.........(2){{e}^{x}}f(x)={{e}^{x}}\left( \dfrac{1}{x} \right)=t.........(2)
The equation (2) is differentiating with respective to x by using product rule of differentiation and then we have
ex(1x2)+(1x)ex=dtdx{{e}^{x}}\cdot \left( \dfrac{-1}{{{x}^{2}}} \right)+\left( \dfrac{1}{x} \right)\cdot {{e}^{x}}=\dfrac{dt}{dx}
The arrangement of the terms, we get
ex(1x)+ex(1x2)=dtdx{{e}^{x}}\cdot \left( \dfrac{1}{x} \right)+{{e}^{x}}\cdot \left( \dfrac{-1}{{{x}^{2}}} \right)=\dfrac{dt}{dx}
From left hand side, we are taking the term ex{{e}^{x}} common and then we have
ex[(1x)+(1x2)]=dtdx{{e}^{x}}\left[ \left( \dfrac{1}{x} \right)+\left( \dfrac{-1}{{{x}^{2}}} \right) \right]=\dfrac{dt}{dx}
Multiplying both sides bydxdx, we get
ex[(1x)+(1x2)]dx=dt{{e}^{x}}\left[ \left( \dfrac{1}{x} \right)+\left( \dfrac{-1}{{{x}^{2}}} \right) \right]dx=dt
The term in left hand side is also written as
ex[1x1x2]dx=dt{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx=dt
Taking the integration on both sides with respective to x, we get
ex[1x1x2]dx=t+c.........(3)\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}=t+c.........(3)
Where c is the constant of integration.
Now, substitute the value of tt which is represented by the equation (2) in the equation (3), we get
ex[1x1x2]dx=ex(1x)+c\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}={{e}^{x}}\left( \dfrac{1}{x} \right)+c
Where c is the constant of integration.
ex[1x1x2]dx=exx+c\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}=\dfrac{{{e}^{x}}}{x}+c
Where c is the constant of integration.
This is the required final value of the given integral which is represented by equation (1).

Note: Alternatively, the given integral can be evaluated as follow.

& \dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right]={{e}^{x}}\dfrac{d}{dx}\left( \dfrac{1}{x} \right)+\dfrac{1}{x}\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}\left( \dfrac{-1}{{{x}^{2}}} \right)+\dfrac{1}{x}{{e}^{x}} \\\ & \dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right]={{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right] \\\ & {{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right] \\\ \end{aligned}$$ Therefore, by the definition of indefinite integral, $\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]}dx={{e}^{x}}\left( \dfrac{1}{x} \right)+c$