Solveeit Logo

Question

Question: Evaluate the integral of \(\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} = \) A) \(...

Evaluate the integral of cos(ln x)dx=\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} =
A) x2(cos ln x + sin ln x)\dfrac{{\text{x}}}{{\text{2}}}\left( {{\text{cos ln x + sin ln x}}} \right)
B) x2[cos ln x - sin ln x]\dfrac{{\text{x}}}{{\text{2}}}\left[ {{\text{cos ln x - sin ln x}}} \right]
C) [x cos ln x + sin ln x]\left[ {{\text{x cos ln x + sin ln x}}} \right]
D) None of these

Explanation

Solution

In this question, we have to evaluate the question to find the value of the given integral term. For that, we are going to solve that given integral term by using integration and differentiation methods. There are no limit values in the given integral term. So we only have to evaluate the values of the integral term.

Formula used: log x = 1x{\text{log x = }}\dfrac{{\text{1}}}{{\text{x}}} where x{\text{x}} is a constant.
ddxuv = u dvdx + v dudx\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{uv = u }}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}{\text{ + v }}\dfrac{{{\text{du}}}}{{{\text{dx}}}}
u dv = uv - v du{\text{u dv = uv - }}\int {{\text{v du}}}

Complete step-by-step answer:
Looking at cos(ln x)dx\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} , we realize that it can’t be integrated straight away. So we will use substitution to solve this question.
We would need cos(ln x)1x{\text{cos}}\left( {{\text{ln x}}} \right)\dfrac{{\text{1}}}{{\text{x}}} to integrate by substitution.
Running out of ideas, let’s try putting in the “missing” 1x\dfrac{{\text{1}}}{{\text{x}}} and an x{\text{x}} to make up for it and try integrating by parts.
\Rightarrow cos(ln x)dx = x cos(ln x)1xdx\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = }}\int {{\text{x cos}}\left( {{\text{ln x}}} \right)} {\text{. }}\dfrac{{\text{1}}}{{\text{x}}}{\text{dx}}} ---------(1)
Let u = x{\text{u = x}} and dv = cos(ln x).1xdx{\text{dv = cos}}\left( {{\text{ln x}}} \right){\text{.}}\dfrac{{\text{1}}}{{\text{x}}}{\text{dx}}
So, du = dx{\text{du = dx}} and v = sin(ln x){\text{v = sin}}\left( {{\text{ln x}}} \right)
Substituting these values in (1), we get
\Rightarrow cos(ln x)dx = x sin(lnx)sin(ln x) dx\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right) - \int {\sin \left( {{\text{ln x}}} \right)} {\text{ dx}}}
\Rightarrow{sin(ln x)dx\int {{\text{sin}}\left( {{\text{ln x}}} \right){\text{dx}}} Here are going to insert x . 1x{\text{x }}{\text{. }}\dfrac{{\text{1}}}{{\text{x}}}}
\Rightarrow cos(ln x)dx = x sin(lnx)sin(ln x) 1x dx\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right) - \int {{\text{x }}\sin \left( {{\text{ln x}}} \right){\text{ }}\dfrac{1}{{\text{x}}}} {\text{ dx}}}
Now, we are going to integrate the term, we have
\Rightarrow x sin(ln x)1xdx = [ - x cos(ln x) -  - cos(ln x)dx]\int {{\text{x sin}}\left( {{\text{ln x}}} \right)\dfrac{{\text{1}}}{{\text{x}}}{\text{dx = }}\left[ {{\text{ - x cos}}\left( {{\text{ln x}}} \right){\text{ - }}\int {{\text{ - cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } \right]}
So we now have,
\Rightarrow cos(ln x)dx = x sin(lnx) - [ - x cos(ln x) -  - cos(ln x)dx]\int {\cos \left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right){\text{ - }}\left[ {{\text{ - x cos}}\left( {{\text{ln x}}} \right){\text{ - }}\int {{\text{ - cos}}\left( {{\text{ln x}}} \right){\text{dx}}} } \right]}
Simplifying we get,
\Rightarrow cos(ln x)dx = x sin(lnx) + x cos(ln x) cos(ln x)dx\int {\cos \left( {{\text{ln x}}} \right){\text{dx = x sin}}\left( {\ln {\text{x}}} \right){\text{ + x cos}}\left( {{\text{ln x}}} \right) - \int {{\text{ cos}}\left( {{\text{ln x}}} \right){\text{dx}}} }
Now let us take I = cos(ln x)dx{\text{I = }}\int {{\text{cos}}\left( {{\text{ln x}}} \right){\text{dx}}} , then we have that
\Rightarrow$$${\text{I = x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right){\text{ - I }}$$ By adding {\text{I}}thenwehavethat,then we have that, \Rightarrow{\text{2I = x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right){\text{ }}$$ Rearranging the term for ${\text{I}}$, $\Rightarrow{\text{I = }}\dfrac{1}{2}\left[ {{\text{x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ }} Now substitute the values of ${\text{I}}$, we get $\Rightarrow$$$\int {\cos \left( {\ln {\text{x}}} \right)} {\text{ dx = }}\dfrac{1}{2}\left[ {{\text{x sin}}\left( {\ln {\text{x}}} \right) + {\text{x cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ + c }}
Taking common x{\text{x}} out from the brackets,
\Rightarrowcos(lnx) dx = x2[sin(lnx)+cos(lnx)] + c \int {\cos \left( {\ln {\text{x}}} \right)} {\text{ dx = }}\dfrac{{\text{x}}}{2}\left[ {{\text{sin}}\left( {\ln {\text{x}}} \right) + {\text{cos}}\left( {\ln {\text{x}}} \right)} \right]{\text{ + c }}

Hence option A is the correct answer.

Note: We use definite integrals when the upper and lower limits of that function are given. We use indefinite integrals when no limits are given to a particular function. Integration is the inverse of differentiation.