Solveeit Logo

Question

Question: Evaluate the integral \(\int {\sqrt {{x^2} - 1} } dx\)....

Evaluate the integral x21dx\int {\sqrt {{x^2} - 1} } dx.

Explanation

Solution

To solve this problem, we must know how to integrate by parts and the formula for this is udv=uvvdu\int {udv} = uv - \int {vdu} . You must be clear in the concept indefinite integral because the limits were not given in this problem. So, you must know how to deal with indefinite integral. Some of the other formula you need to know is and
1x21dx\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx == log(x+x21)+c\log \left( {x + \sqrt {{x^2} - 1} } \right) + c

Complete step by step answer:
Let us consider the given problem,
x21dx\int {\sqrt {{x^2} - 1} } dx
Take I=x21dxI = \sqrt {{x^2} - 1} dx, integrate this by parts and formula for this is udv=uvvdu\int {udv} = uv - \int {vdu} , let’s take u=x21u = \sqrt {{x^2} - 1} and to find dudu we need to differentiate uu,
du=12x21(2x0)dx=xx21du = \dfrac{1}{{2\sqrt {{x^2} - 1} }}\left( {2x - 0} \right)dx = \dfrac{x}{{\sqrt {{x^2} - 1} }}
Let’s take dv=dxdv = dx, if we integrate this we get vv,
v=xv = x

Substituting the value of uu, dudu, vv and dvdv we get,
I=xx21x(xx21)dx I=xx21x2x21dx  \Rightarrow I = x\sqrt {{x^2} - 1} - \int x \left( {\dfrac{x}{{\sqrt {{x^2} - 1} }}} \right)dx \\\ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\dfrac{{{x^2}}}{{\sqrt {{x^2} - 1} }}} dx \\\
Add and subtract with 11 in the second part of the above equation we get,
I=xx21x21+1x21dx\Rightarrow I = x\sqrt {{x^2} - 1} - \int {\dfrac{{{x^2} - 1 + 1}}{{\sqrt {{x^2} - 1} }}} dx
We are writing the above equation as,
I=xx21(x21x21+1x21)dx\Rightarrow I = x\sqrt {{x^2} - 1} - \int {\left( {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }} + \dfrac{1}{{\sqrt {{x^2} - 1} }}} \right)} dx
x21x21\Rightarrow \int {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }}} becomes x21x21=x21×x21x21=x21\int {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }} = \int {\dfrac{{\sqrt {{x^2} - 1} \times \sqrt {{x^2} - 1} }}{{\sqrt {{x^2} - 1} }}} } = \int {\sqrt {{x^2} - 1} } , the above equation becomes,
I=xx21x21dx1x21dx\Rightarrow I = x\sqrt {{x^2} - 1} - \int {\sqrt {{x^2} - 1} } dx - \int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx
We know that, I=x21dxI = \sqrt {{x^2} - 1} dx and 1x21dx\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx == log(x+x21)+c\log \left( {x + \sqrt {{x^2} - 1} } \right) + c
I=xx21Ilog(x+x21)+c\Rightarrow I = x\sqrt {{x^2} - 1} - I - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c
I+I=xx21log(x+x21)+c\Rightarrow I + I = x\sqrt {{x^2} - 1} - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c
2I=xx21log(x+x21)+c\Rightarrow 2I = x\sqrt {{x^2} - 1} - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c
I=x2x2112log(x+x21)+c2\Rightarrow I = \dfrac{x}{2}\sqrt {{x^2} - 1} - \dfrac{1}{2}\log \left( {x + \sqrt {{x^2} - 1} } \right) + \dfrac{c}{2}
This is our required solution.

Additional information: This problem is one of the difficult problems in indefinite integral because only when you know the formula for the integral, which I have mentioned in the note, you are able to solve this problem. And integrating by parts method is a common method which is used most common in major problems in integration.

Note: To prove 1x21dx\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx == log(x+x21)+c\log \left( {x + \sqrt {{x^2} - 1} } \right) + c, take u=x+x212u = x + \sqrt {{x^2} - {1^2}} and by differentiating this we get du=(1+2x2x212)dx \Rightarrow du = \left( {1 + \dfrac{{2x}}{{2\sqrt {{x^2} - {1^2}} }}} \right)dx
du=(x212+xx212)dx\Rightarrow du = \left( {\dfrac{{\sqrt {{x^2} - {1^2}} + x}}{{\sqrt {{x^2} - {1^2}} }}} \right)dx
dx=(x212x212+x)du\Rightarrow dx = \left( {\dfrac{{\sqrt {{x^2} - {1^2}} }}{{\sqrt {{x^2} - {1^2}} + x}}} \right)du
Substituting the value of dxdx and uu in II we get,
I=(1x21×x212u)du\Rightarrow I = \int {\left( {\dfrac{1}{{\sqrt {{x^2} - 1} }} \times \dfrac{{\sqrt {{x^2} - {1^2}} }}{u}} \right)} du
I=duu\Rightarrow I = \int {\dfrac{{du}}{u}}
I=logu+cI = \log u + c, we already know that u=x+x212u = x + \sqrt {{x^2} - {1^2}} so in the question we directly wrote this integral. Know this value so that you are able to save time in the examination.