Solveeit Logo

Question

Question: Evaluate the integral \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx\] A) \[20\] B) \[...

Evaluate the integral π10πsinxdx\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx
A) 2020
B) 88
C) 1010
D) 1818

Explanation

Solution

We will first check the periodicity of the given integrand. Then we will use the periodic property to simplify the integral. We will then use the definition of the absolute value to simplify it further. We will apply the integration formula of the trigonometric function to find the required value.

Formula used:
For a periodic function f(x)f(x) with period aa, manaf(x)dx=(nm)0af(x)dx\int\limits_{ma}^{na} {f(x)dx = (n - m)\int\limits_0^a {f(x)dx} }

Complete step by step solution:
We have to evaluate the integral π10πsinxdx\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx.
Here, the lower limit is π\pi and the upper limit is 10π10\pi . Also, f(x)=sinxf(x) = \left| {\sin x} \right|.
Let us check the periodicity of the function f(x)=sinxf(x) = \left| {\sin x} \right|.
We know that sin(π+x)=sinx\sin (\pi + x) = - \sin x.
Taking modulus on both sides, we get
sin(π+x)=sinx=sinx\left| {\sin (\pi + x)} \right| = \left| { - \sin x} \right| = \left| {\sin x} \right|
This means that the function f(x)=sinxf(x) = \left| {\sin x} \right| is periodic with period π\pi .
Now, let us apply the property manaf(x)dx=(nm)0af(x)dx\int\limits_{ma}^{na} {f(x)dx = (n - m)\int\limits_0^a {f(x)dx} } , where f(x)f(x) is a periodic function with period aa.
Comparing the given integral π10πsinxdx\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx with manaf(x)dx\int\limits_{ma}^{na} {f(x)dx} , we see that m=1,n=10,a=πm = 1,n = 10,a = \pi and f(x)=sinxf(x) = \left| {\sin x} \right|.
Hence, applying the property to the given integral, we get
π10πsinxdx=(101)0πsinxdx\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = (10 - 1)\int\limits_0^\pi {\left| {\sin x} \right|} dx
π10πsinxdx=90πsinxdx\Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9\int\limits_0^\pi {\left| {\sin x} \right|} dx ……….(1)(1)
In equation (1)(1), the integral to be evaluated on the RHS is 0πsinxdx\int\limits_0^\pi {\left| {\sin x} \right|} dx.
We know that for an absolute value function, \left| x \right| = \left\\{ \begin{array}{l}x{\text{ if }}x > 0\\\0{\text{ if }}x = 0\\\ - x{\text{ if }}x < 0\end{array} \right.
Using this definition of absolute value function, we have
\left| {\sin x} \right| = \left\\{ \begin{array}{l}0{\text{ if }}x = 0\\\\\sin x{\text{ if }}0 < x < \pi \\\ - \sin x{\text{ if }}\pi < x < 2\pi \end{array} \right.
We observe from the integral 0πsinxdx\int\limits_0^\pi {\left| {\sin x} \right|} dx that xx lies between 00and π\pi .
So, from the definition of the function sinx\left| {\sin x} \right|, for the interval 0<x<π0 < x < \pi , sinx=sinx\left| {\sin x} \right| = \sin x.
Therefore, 0πsinxdx=0πsinxdx\int\limits_0^\pi {\left| {\sin x} \right|} dx = \int\limits_0^\pi {\sin xdx}
Substituting this in equation (1)(1), we have
π10πsinxdx=90πsinxdx\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9\int\limits_0^\pi {\sin xdx} ……….(2)(2)
We know that sinx=cosx+c\int {\sin x} = - \cos x + c.
Using this in equation (2)(2), we get
π10πsinxdx=9×[cosx]0π\Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left[ { - \cos x} \right]_0^\pi …………(3)(3)
We know that abf(x)dx=f(b)f(a)\int\limits_a^b {f(x)dx} = f(b) - f(a).
Using this in equation (3)(3), we have
π10πsinxdx=9×(cosπ(cos0))\Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left( { - \cos \pi - ( - \cos 0)} \right) ……….(4)(4)
Now, cosπ=1\cos \pi = - 1 and cos0=1\cos 0 = 1. Hence, equation (4)(4) becomes
π10πsinxdx=9×(2)=18\Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left( 2 \right) = 18

Therefore, π10πsinxdx=18\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 18 and so the correct option is D.

Note:
Trigonometry is a branch of mathematics that helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers to make maps. It is also used by the aviation and naval industries.
A periodic function is a function that repeats its values at regular intervals. In the above problem, sinx\left| {\sin x} \right| is a periodic function with period π\pi , which means that sinx\left| {\sin x} \right| repeats its values after every π\pi radians.