Solveeit Logo

Question

Question: Evaluate the integral \(\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx} \). (A) \(0\...

Evaluate the integral π2π2cosxdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx} .
(A) 00
(B) 22
(C) 1 - 1
(D) None of these

Explanation

Solution

Hint : In this problem, we have to evaluate the definite integral. First we will integrate the given function with respect to xx and then we will put limits in place of xx. After simplification, we will get required value. Note that cosxdx=sinx\int {\cos xdx = \sin x} .

Complete step-by-step answer :
Here we need to evaluate integralπ2π2cosxdx\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx} . Let us say I=π2π2cosxdxI = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx} . We know that cosxdx=sinx\int {\cos xdx = \sin x} . So, by using this formula we can write
I=π2π2cosxdx=[sinx]π2π2I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx = \left[ {\sin x} \right]_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}}}
Now we are going to put an upper limit and lower limit in place of xx. So, we can write
I=sin(π2)sin(π2)I = \sin \left( {\dfrac{\pi }{2}} \right) - \sin \left( { - \dfrac{\pi }{2}} \right)
We know that sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta . Use this information in the above expression so we can write
I=sin(π2)+sin(π2) I=2sin(π2)  I = \sin \left( {\dfrac{\pi }{2}} \right) + \sin \left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow I = 2\sin \left( {\dfrac{\pi }{2}} \right) \\\
We know that the value of sin(π2)\sin \left( {\dfrac{\pi }{2}} \right) is equal to 11. Substitute this value so we can write
I=2(1) I=2 π2π2cosxdx=2  I = 2\left( 1 \right) \\\ \Rightarrow I = 2 \\\ \Rightarrow \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx} = 2 \\\
Hence, we can say that option B is correct.
So, the correct answer is “Option B”.

Note : We can solve this problem in another way. If f(x)=f(x)f\left( { - x} \right) = f\left( x \right) then f(x)f\left( x \right) is an even function. In the given problem, cos(x)=cosx\cos \left( { - x} \right) = \cos x so we can say that f(x)=cosxf\left( x \right) = \cos x is an even function. We know that if f(x)f\left( x \right) is an even function then aaf(x)dx=20af(x)dx\int\limits_{ - a}^a {f\left( x \right)dx = 2\int\limits_0^a {f\left( x \right)dx} } . Using this information,
we can write I=π2π2cosxdx=20π2cosxdxI = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx = 2\int\limits_0^{\dfrac{\pi }{2}} {\cos xdx} } . After evaluating the integral, we will get the same answer. That is, π2π2cosxdx=2\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\cos xdx = 2} . If f(x)=f(x)f\left( { - x} \right) = - f\left( x \right) then f(x)f\left( x \right) is an odd function. If f(x)f\left( x \right) is an odd function then aaf(x)dx=0\int\limits_{ - a}^a {f\left( x \right)dx = 0} . This is an important result when we are dealing with integration in which limits are given as a - a to aa.