Solveeit Logo

Question

Question: Evaluate the integral \[\int\limits_1^2 {\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right){e^{2x}}...

Evaluate the integral 12(1x12x2)e2xdx\int\limits_1^2 {\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right){e^{2x}}dx} using substitution.

Explanation

Solution

Here, in the question, the given integral is a definite integral. The definite integral is denoted by abf(x)dx\int\limits_a^b {f\left( x \right)dx} , where aa is the lower limit of the integral and bb is the upper limit of the integral. The definite integral is evaluated in the two ways mentioned: (i) The definite integral as the limit of the sum, (ii)abf(x)dx=F(b)F(a)\int\limits_a^b {f\left( x \right)dx = F\left( b \right) - F\left( a \right)} , if FF is an anti-derivative of f(x)f\left( x \right). We will use the second method discussed to evaluate the given integral.
Formula Used:
ex[f(x)+f(x)]dx=exf(x)+C\int {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]} dx = {e^x}f\left( x \right) + C

Complete step-by-step solution:
Let I=12(1x12x2)e2xdxI = \int\limits_1^2 {\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right){e^{2x}}dx}
Substituting the value of xx in form of tt as,
Put2x=t2x = t
2dx=dt\Rightarrow 2dx = dt
When x=1,t=2x = 1,t = 2 and when x=2,t=4x = 2,t = 4
Therefore, I=2412(2t2t2)etdtI = \int\limits_2^4 {\dfrac{1}{2}\left( {\dfrac{2}{t} - \dfrac{2}{{{t^2}}}} \right){e^t}dt}
Taking 22 common from both the terms in bracket, we get,
I=24(1t1t2)etdtI = \int\limits_2^4 {\left( {\dfrac{1}{t} - \dfrac{1}{{{t^2}}}} \right){e^t}dt}
Now, Let 1t=f(t)\dfrac{1}{t} = f\left( t \right)
Then, f(t)=1t2f'\left( t \right) = - \dfrac{1}{{{t^2}}}
Therefore,I=24et[f(t)+f(t)]dtI = \int\limits_2^4 {{e^t}\left[ {f\left( t \right) + f'\left( t \right)} \right]} dt
Using the identity, ex[f(x)+f(x)]dx=exf(x)+C\int {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]} dx = {e^x}f\left( x \right) + C, we get,
I=[etf(t)]24I = \left[ {{e^t}f\left( t \right)} \right]_2^4
Now, we havef(t)=1tf\left( t \right) = \dfrac{1}{t},

I=[et×1t]24 I=[ett]24  I = \left[ {{e^t} \times \dfrac{1}{t}} \right]_2^4 \\\ \Rightarrow I = \left[ {\dfrac{{{e^t}}}{t}} \right]_2^4 \\\

Putting the limits, we get,
I=(e44e22)I = \left( {\dfrac{{{e^4}}}{4} - \dfrac{{{e^2}}}{2}} \right)
Takinge24\dfrac{{{e^2}}}{4}common, we get,
I=e24(e22)I = \dfrac{{{e^2}}}{4}\left( {{e^2} - 2} \right)
Hence, 12(1x12x2)e2xdx=e24(e22)\int\limits_1^2 {\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right){e^{2x}}dx} = \dfrac{{{e^2}}}{4}\left( {{e^2} - 2} \right)
Additional information: In mathematics, integration by substitution, also known as variable change, is a method for evaluating integrals and antiderivatives. As chain rule is the most common method for differentiation, similarly, substitution is the most common method for evaluating integrals.

Note: The process of differentiation and integration are inverse of each other, i.e., ddxf(x)dx=f(x)\dfrac{d}{{dx}}\int {f\left( x \right)dx = f\left( x \right)} and f(x)dx=f(x)+C\int {f'\left( x \right)dx = f\left( x \right) + C} , where CC is any arbitrary constant. These integrals are known as indefinite integrals or general integrals, CC is called a constant of integration. All these integrals differ by a constant. We use indefinite integrals when there are no limits given to a particular function. We use definite integrals when both the upper and lower limits of that function are given.