Question
Question: Evaluate the integral \(\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\)....
Evaluate the integral 0∫π1+sinxxsinxdx.
Explanation
Solution
Hint: Solve the integral by replacing x by (π−x)as per 0∫af(x)dx=0∫af(a−x)dx. Then simplify it using trigonometric identities. Finally, after integration substitute (π,0)in the place of x.
Complete step-by-step solution -
Given the integral, 0∫π1+sinxxsinxdx.
Let’s put, I=0∫π1+sinxxsinxdx.
We know that, 0∫af(x)dx=0∫af(a−x)dx.
Thus, x becomes (π−x).
∴I=0∫π1+sin(π−x)(π−x)sinxdx
We know, sin(180−θ)=sinθ
sin(π−x)=sinx