Solveeit Logo

Question

Question: Evaluate the integral \(\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\)....

Evaluate the integral 0πxsinx1+sinxdx\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}.

Explanation

Solution

Hint: Solve the integral by replacing x by (πx)\left( \pi -x \right)as per 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}. Then simplify it using trigonometric identities. Finally, after integration substitute (π,0)\left( \pi ,0 \right)in the place of x.

Complete step-by-step solution -
Given the integral, 0πxsinx1+sinxdx\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}.
Let’s put, I=0πxsinx1+sinxdxI=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}.
We know that, 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}.
Thus, x becomes (πx)\left( \pi -x \right).
I=0π(πx)sinx1+sin(πx)dx\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}
We know, sin(180θ)=sinθ\sin \left( 180-\theta \right)=\sin \theta
sin(πx)=sinx\sin \left( \pi -x \right)=\sin x

& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\\ & I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\\ \end{aligned}$$ $$I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$$ $$I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I$$ $$\begin{aligned} & \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\\ & 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\\ & \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\\ \end{aligned}$$ Multiply numerator and denominator with $$\left( 1-\sin x \right)$$. $$\begin{aligned} & I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\\ & =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\\ & =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\\ & =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\\ & =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\\ & =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\\ \end{aligned}$$ We know, $$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$$. $$\begin{aligned} & {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\\ & \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\\ & \tan x=\dfrac{\sin x}{\cos x} \\\ \end{aligned}$$ Which are basic, trigonometric formulae. $$\because \dfrac{1}{\cos x}=\sec x$$ We know $$\int{\tan x.\sec x=\sec x}$$and $$\int{{{\sec }^{2}}x=\tan x}$$. Similarly, $${{\tan }^{2}}x={{\sec }^{2}}x-1$$. $$\begin{aligned} & =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\\ & =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\\ & =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\\ & =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\\ & =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\\ \end{aligned}$$ $$\sec \pi =-1$$ $$\tan \pi =0$$ $$\sec 0=+1$$ $$\tan 0=0$$ $$\begin{aligned} & =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\\ & =\dfrac{\pi }{2}\left[ -2+\pi \right] \\\ & =\dfrac{\pi \left( \pi -2 \right)}{2} \\\ & \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\\ \end{aligned}$$ Hence, by evaluating the integral, we get $$\dfrac{\pi \left( \pi -2 \right)}{2}$$. Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of $$\tan x.\sec x,{{\sec }^{2}}x$$ etc, which we have used in solving the integral. Finally substitute $$\left( \pi ,0 \right)$$and simplify the expression.