Question
Question: Evaluate the integral \[\int\limits_{0}^{\pi }{\dfrac{x\tan x}{\sec x\cdot \text{cosec}x}dx}\]....
Evaluate the integral 0∫πsecx⋅cosecxxtanxdx.
Solution
In this question, in order to evaluate the definite integral 0∫πsecx⋅cosecxxtanxdx, we will first substitute the values tanx=cosxsinx, secx=cosx1 and cosecx=sinx1 in the integrant of the given integral to simplify it into 0∫πxsin2xdx. Then we will use the property of the integral that 0∫af(x)dx=0∫af(a−x)dx in the integral 0∫πxsin2xdx and then will substituting the value 2sin2x=1−cos2x in the simplified form of the integral. We will then evaluate the same in order to get the desired answer.
Complete step by step answer:
Let I denote the integral 0∫πsecx⋅cosecxxtanxdx.
That is, let I=0∫πsecx⋅cosecxxtanxdx.
Now on substituting the values tanx=cosxsinx, secx=cosx1 and cosecx=sinx1 in the integrant of the above integral we get