Solveeit Logo

Question

Question: Evaluate the integral \[\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} \] A. \(\dfrac{1}{{\sqrt ...

Evaluate the integral 0π4sec3xdx\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx}
A. 12+12log(2+1)\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right)
B. 1212log(2+1)\dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right)
C. 22.log(2)2\sqrt 2 .\log \left( {\sqrt 2 } \right)
D.12log(2)\dfrac{1}{{\sqrt 2 }}\log \left( {\sqrt 2 } \right)

Explanation

Solution

Hint: We had to only apply a reduction formula for secnxdx\int {{{\sec }^n}xdx} . And after that we can put the limits. Reduction formula for the integration for secnxdx\int {{{\sec }^n}xdx} is secnxdx=secn1(x)sinxn1+n2n1secn2(x)dx\int {{{\sec }^n}xdx = } \dfrac{{{{\sec }^{n - 1}}\left( x \right)\sin x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}\left( x \right)dx} .

Complete step-by-step answer:
As we know that if we are given the trigonometric function with a power as integer then we can directly apply a reduction formula to find the integration value.
So, applying reduction formula to find the value of sec3xdx\int {{{\sec }^3}xdx}
secnxdx=secn1(x)sinxn1+n2n1secn2(x)dx\Rightarrow \int {{{\sec }^n}xdx = } \dfrac{{{{\sec }^{n - 1}}\left( x \right)\sin x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}\left( x \right)dx} (1)
Putting the value of n = 3 in the above equation. sec3xdx=sec31(x)sinx31+3231sec32(x)dx\Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^{3 - 1}}\left( x \right)\sin x}}{{3 - 1}} + \dfrac{{3 - 2}}{{3 - 1}}\int {{{\sec }^{3 - 2}}\left( x \right)dx}
Solving above equation.
sec3xdx=sec2(x)sinx2+12secxdx\Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^2}\left( x \right)\sin x}}{2} + \dfrac{1}{2}\int {\sec xdx} (2)
Now as we know that the integration of secx\sec x is logsecx+tanx\log \left| {\sec x + \tan x} \right|.
So, secxdx=logsecx+tanx\int {\sec xdx} = \log \left| {\sec x + \tan x} \right|
So, putting the value of secxdx\int {\sec xdx} in equation 2.
sec3xdx=sec2(x)sinx2+12logsecx+tanx\Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^2}\left( x \right)\sin x}}{2} + \dfrac{1}{2}\log \left| {\sec x + \tan x} \right|
Now applying limits from 0 to π4\dfrac{\pi }{4} to both the sides of the above equation.
0π4sec3xdx=12[sec2(x)sinx]0π4+12[logsecx+tanx]0π4\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\sec }^2}\left( x \right)\sin x} \right]_0^{\dfrac{\pi }{4}} + \dfrac{1}{2}\left[ {\log \left| {\sec x + \tan x} \right|} \right]_0^{\dfrac{\pi }{4}}
Now we had to put upper limits and lower limits in the above equation.
0π4sec3xdx=12[sec2(π4)sinπ4sec2(0)sin0]+12[logsecπ4+tanπ4logsec0+tan0]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\sec }^2}\left( {\dfrac{\pi }{4}} \right)\sin \dfrac{\pi }{4} - {{\sec }^2}\left( 0 \right)\sin 0} \right] + \dfrac{1}{2}\left[ {\log \left| {\sec \dfrac{\pi }{4} + \tan \dfrac{\pi }{4}} \right| - \log \left| {\sec 0 + \tan 0} \right|} \right]
Now as we know that secπ4=2\sec \dfrac{\pi }{4} = \sqrt 2 , sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}, sec0=1,sin0=0,tanπ4=1,tan0=0\sec 0 = 1,\sin 0 = 0,\tan \dfrac{\pi }{4} = 1,\tan 0 = 0 and according to logarithmic identities logalogb=logab\log \left| a \right| - \log \left| b \right| = \log \left| {\dfrac{a}{b}} \right|
So, 0π4sec3xdx=12[(2)212(1)20]+12[log2+1log1+0]\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\left( {\sqrt 2 } \right)}^2}\dfrac{1}{{\sqrt 2 }} - {{\left( 1 \right)}^2}0} \right] + \dfrac{1}{2}\left[ {\log \left| {\sqrt 2 + 1} \right| - \log \left| {1 + 0} \right|} \right]
Now solving the above equation.
0π4sec3xdx=12[2]+12[log2+11]\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {\sqrt 2 } \right] + \dfrac{1}{2}\left[ {\log \left| {\dfrac{{\sqrt 2 + 1}}{1}} \right|} \right]
0π4sec3xdx=12+12log(2+1)\Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right)
Hence, the correct option will be A.

Note:- Whenever we come up with this type of problem then there is also another way to find the solution. We can also apply by parts with the first term as u=secxu = \sec x and the second term as v=sec2xv = {\sec ^2}x. And then applying by-parts formula that is uvdx=uvdx(dudx(vdx)dx)\int {uvdx} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} \right)} } . But the easiest and efficient way to find the value of the integral of type secnxdx\int {{{\sec }^n}xdx} is by applying a reduction formula.