Solveeit Logo

Question

Question: Evaluate the integral \(\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx\)...

Evaluate the integral x6+1x2+1dx\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx

Explanation

Solution

Hint: Here, the given integral can be solved by simplifying the integral first and
then applying the suitable formulae of integrals.

Given,
x6+1x2+1dx(1)\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx \to (1)
Now, let us consider the numerator x6+1{x^6} + 1 as we can see it is in the form of a3+b3{a^3} + {b^3} where a=x2,b=1a = {x^2},b = 1 .
Since, we know a3+b3=(a+b)(a2ab+b2){a^3} + {b^3} = (a + b)({a^2} - ab + {b^2}).
Now, we can expand x6+1{x^6} + 1 as
x6+1=(x2)3+1=(x2+1)(x4x2+1)\Rightarrow {x^6} + 1 = {({x^2})^3} + 1 = ({x^2} + 1)({x^4} - {x^2} + 1)
Now, equation (1) can be rewritten as follows:
(x2+1)(x4x2+1)x2+1dx\Rightarrow \int {\frac{{({x^2} + 1)({x^4} - {x^2} + 1)}}{{{x^2} + 1}}} dx
Here, x2+1{x^2} + 1 term gets cancelled and we will be left with
(x4x2+1)dx\Rightarrow \int {({x^4} - {x^2} + 1)dx}
Applying, integral to each term, we get
x4dxx2dx+1dx\Rightarrow \int {{x^4}dx - \int {{x^2}dx + \int {1dx} } }
As we know that xndx=xn+1n+1+c,\int {{x^n}dx = \int {\frac{{{x^{n + 1}}}}{{n + 1}} + c,} } where ‘c’ is the
constant of integration. So applying the formulae, we get
x4+14+1x2+12+1+x+c[dx=x] x55x33+x+c  \Rightarrow \frac{{{x^{4 + 1}}}}{{4 + 1}} - \frac{{{x^{2 + 1}}}}{{2 + 1}} + x + c[\because \int {dx} = x] \\\ \Rightarrow \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c \\\
Hence, x6+1x2+1dx\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx =x55x33+x+c = \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c
where ‘c ‘is the constant of integration.
Note: The alternate approach for solving this question is by substitution method where x=tantx = \tan t and dx=sec2tdtdx = {\sec ^2}tdt.