Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

Evaluate the integral πxn+1x,dx\int \frac{\pi}{x^n + 1 - x} , dx:

A

πnlogexn1xn+C\frac{\pi}{n} \log_e \left| \frac{x^n - 1}{x^n} \right| + C

B

logexn+1+1xn1+C\log_e \left| \frac{x^{n+1} + 1}{x^{n-1}} \right| + C

C

πnlogexn+1xn+C\frac{\pi}{n} \log_e \left| \frac{x^{n+1}}{x^n} \right| + C

D

πlogexnxn1+C\pi \log_e \left| \frac{x^n}{x^{n-1}} \right| + C

Answer

πnlogexn1xn+C\frac{\pi}{n} \log_e \left| \frac{x^n - 1}{x^n} \right| + C

Explanation

Solution

Begin with the integral:
πxn+1xdx\int \frac{\pi}{x^{n+1} - x} \, dx
Factor the denominator:
xn+1x=x(xn1)x^{n+1} - x = x \cdot (x^n - 1)
Thus, the integral becomes:
πx(xn1)dx\int \frac{\pi}{x \cdot (x^n - 1)} \, dx
Use the substitutionu=xn1u = x^n - 1, so du=nxn1dxdu = n x^{n-1} \, dx, which gives dx=dunxn1dx = \frac{du}{n x^{n-1}}.
Substitute uu and simplify:
πxudunxn1=πn1u1xndu\int \frac{\pi}{x \cdot u} \cdot \frac{du}{n x^{n-1}} = \frac{\pi}{n} \int \frac{1}{u} \cdot \frac{1}{x^n} \, du
Since xn=u+1x^n = u + 1, we get:
πn1udu=πnlogeu+C\frac{\pi}{n} \int \frac{1}{u} \, du = \frac{\pi}{n} \log_e |u| + C
Substitute back for uu:
πnlogexn1+C\frac{\pi}{n} \log_e |x^n - 1| + C