Question
Mathematics Question on Integration by Partial Fractions
Evaluate the integral ∫xn+1−xπ,dx:
A
nπlogexnxn−1+C
B
logexn−1xn+1+1+C
C
nπlogexnxn+1+C
D
πlogexn−1xn+C
Answer
nπlogexnxn−1+C
Explanation
Solution
Begin with the integral:
∫xn+1−xπdx
Factor the denominator:
xn+1−x=x⋅(xn−1)
Thus, the integral becomes:
∫x⋅(xn−1)πdx
Use the substitutionu=xn−1, so du=nxn−1dx, which gives dx=nxn−1du.
Substitute u and simplify:
∫x⋅uπ⋅nxn−1du=nπ∫u1⋅xn1du
Since xn=u+1, we get:
nπ∫u1du=nπloge∣u∣+C
Substitute back for u:
nπloge∣xn−1∣+C