Solveeit Logo

Question

Question: Evaluate the integral \(\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}.\)...

Evaluate the integral x21(x1)2(x+3)dx.\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}..

Explanation

Solution

In this we will evaluate the integral  x21(x1)2(x+3)dx \text{ }\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}\text{ } by using method of partial fractions. In the method of partial fraction the function which is to be integrated should be rational function or rational algebraic function. We first represent rational function in partial form then by integral we can evaluate. Now we will give one of the general conversion of rational form into partial form which as follows:
px+q(xa)(xb)=Axa+Bxb\dfrac{px+q}{\left( x-a \right)\left( x-b \right)}=\dfrac{A}{x-a}+\dfrac{B}{x-b}

Complete step by step answer:
Let I=x21(x1)2(x+3)dxI=\int{\dfrac{{{x}^{2}}-1}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}
Since a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)
x212=(x1)(x+1){{x}^{2}}-{{1}^{2}}=\left( x-1 \right)\left( x+1 \right)
I=(x1)(x+1)(x1)2(x+3)dx\Rightarrow I=\int{\dfrac{\left( x-1 \right)\left( x+1 \right)}{{{\left( x-1 \right)}^{2}}\left( x+3 \right)}dx}
By cancelling (x-1) by both numerator and denominator, we get
I=(x+1)(x1)(x+3)dx ....(1)\Rightarrow I=\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}\text{ }....\text{(1)}
Now consider, (x+1)(x1)(x+3)=Ax1+Bx+3 ...(2)\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}=\dfrac{A}{x-1}+\dfrac{B}{x+3}\text{ }...\text{(2)}
By cross multiplication, we get
(x+1)=A(x+3)+B(x1) ...(3)\left( x+1 \right)=A\left( x+3 \right)+B\left( x-1 \right)\text{ }...\text{(3)}
Put x=-3 in equation (3), we get
(3+1)=A(3+3)+B(31)\left( -3+1 \right)=A\left( -3+3 \right)+B\left( -3-1 \right)
2=A(0)+B(4) -2=A\left( 0 \right)+B\left( -4 \right)\text{ }
B(4)(2)B\left( -4 \right)\text{= }\left( -2 \right)
Dividing both sides by -4, we get
B=12B=\dfrac{1}{2}.
Put x=1 in equation (3), we get
(1+1)=A(1+3)+B(11) \left( 1+1 \right)=A\left( 1+3 \right)+B\left( 1-1 \right)\text{ }
2=A(4)+B(0) 2=A\left( 4 \right)+B\left( 0 \right)\text{ }
A(4)=2 A\left( 4 \right)\text{=2 }
Dividing both sides by 4, we get
A=12 A\text{=}\dfrac{1}{2}\text{ }
By using values of A and B in equation (2), we get
(x+1)(x1)(x+3)=12x1+12x+3 \dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}=\dfrac{\dfrac{1}{2}}{x-1}+\dfrac{\dfrac{1}{2}}{x+3}\text{ }
Taking 12\dfrac{1}{2} common form right hand side, we get
(x+1)(x1)(x+3)=12(1x1+1x+3) ...(4)\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}\text{=}\dfrac{1}{2}\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }...\text{(4)}
By integrating equation (4) with respect to x,
(x+1)(x1)(x+3)dx=12(1x1+1x+3) dx\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\int{\dfrac{1}{2}\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }dx}
(x+1)(x1)(x+3)dx=12(1x1+1x+3) dx\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\int{\left( \dfrac{1}{x-1}+\dfrac{1}{x+3} \right)\text{ }dx}
(x+1)(x1)(x+3)dx=12(1x1 dx+1x+3 dx) ...(5)\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\left( \int{\dfrac{1}{x-1}\text{ }dx}+\int{\dfrac{1}{x+3}\text{ }dx} \right)\text{ }...(5)
Since 1x+a dx=log(x+a)+c \int{\dfrac{1}{x+a}\text{ }dx=\log (x+a)}+c\text{ }
1x1 dx=log(x1)+c ...(6) and\Rightarrow \int{\dfrac{1}{x-1}\text{ }dx}=\log (x-1)+c\text{ }...\text{(6) and}
1x+3 dx=log(x+3)+c ...(7)\int{\dfrac{1}{x+3}\text{ }dx}=\log (x+3)+c\text{ }...\text{(7)}
By using equation (6) and equation (7) in equation (5),
(x+1)(x1)(x+3)dx=12(log(x1)+log(x+3))+c\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\left( \log (x-1)+\log (x+3) \right)+c
Since loga+logb=log(ab)\log a+ \log b=log(ab)
Hence,
 (x+1)(x1)(x+3)dx=12log((x1)(x+3))+c \text{ }\int{\dfrac{\left( x+1 \right)}{\left( x-1 \right)\left( x+3 \right)}dx}=\dfrac{1}{2}\text{log}\left( (x-1)(x+3) \right)\text{+c }

Note:
In this problem, one should know all the formula of integration, the rational function and if f(x) and g(x)f(x)\text{ and }g(x) are two polynomial then f(x) g(x),\dfrac{f(x)}{\text{ }g(x)}, g(x)0g(x)\ne 0 is called rational function.