Question
Question: Evaluate the integral\[\int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{...
Evaluate the integral∫(secx+tanx)29sec2xdx? (For some arbitrary constant k)
(a)(secx+tanx)211−1(111+7(secx+tanx)3)+k (b)(secx+tanx)211−1(111+7(secx−tanx)2)+k (c)(secx+tanx)211−1(111+7(secx+tanx)2)+k (d)(secx+tanx)2111(111+7(secx+tanx)2)+k
Solution
Hint: In this question use the concept of substitution, let secx+tanx be equal to some variable, then differentiate both sides and solve further by substituting it back to the main integral and use basic trigonometric identities to get the answer.
Complete step-by-step answer:
Let I=∫(secx+tanx)29sec2xdx
Substitute secx+tanx=t………………… (1)
So differentiate it w.r.t. x we have,
⇒(secxtanx+sec2x)dx=dt
Now simplify it we have,
⇒secx(tanx+secx)dx=dt
So from equation (1) we have
⇒secxdx=tdt
Now from equation (1) the value of t1 =secx+tanx1………………….. (2)
Now add equation (1) and (2) we have,
t+t1=secx+tanx+secx+tanx1
Now in extreme left most part multiply and divide by (secx−tanx) we have,
t+t1=secx+tanx+secx+tanx1×secx−tanxsecx−tanx
Now in denominator it is in the form of (a−b)(a+b)=a2−b2
⇒t+t1=secx+tanx+sec2x−tan2xsecx−tanx
And we know that the value of sec2x−tan2x is 1.
⇒t+t1=secx+tanx+secx−tanx=2secx
⇒secx=21(t+t1)………………….. (3)
So from equation (1), (2) and (3) the integral becomes
⇒I=∫(secx+tanx)29sec2xdx=∫(t)29secx(tdt)=∫(t)29+121(t+t1)dt
Now simplify the above integral we have,
⇒I=21∫(t)29+1(t+t1)dt=21∫t211t+t211+11dt=21∫t2−9+t2−13dt
Now as we know ∫tndt=n+1tn+1+k where k is some arbitrary integration constant, so use this property we have,
⇒I=21∫t2−9+t2−13dt=212−9+1t2−9+1+2−13+1t2−13+1+k
Now simplify it we have,
⇒I=21−72t2−7−112t2−11+k=−71t2−7−111t2−11+k=−7t271+11t2111+k
⇒I=t211−1(111+7t2)+k
Now re-substitute the value of t we have,
⇒I=−(secx+tanx)2111(111+7(secx+tanx)2)+k
So this is the required value of the integral.
Hence option (c) is correct.
Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula like∫tndt=n+1tn+1+k. It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.