Solveeit Logo

Question

Question: Evaluate the integral\[\int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{...

Evaluate the integralsec2x(secx+tanx)92dx\int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} ? (For some arbitrary constant k)
(a)1(secx+tanx)112(111+(secx+tanx)37)+k (b)1(secx+tanx)112(111+(secxtanx)27)+k (c)1(secx+tanx)112(111+(secx+tanx)27)+k (d)1(secx+tanx)112(111+(secx+tanx)27)+k  (a)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^3}}}{7}} \right) + k \\\ (b)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x - \tan x} \right)}^2}}}{7}} \right) + k \\\ (c)\dfrac{{ - 1}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k \\\ (d)\dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k \\\

Explanation

Solution

Hint: In this question use the concept of substitution, let secx+tanx\sec x + \tan x be equal to some variable, then differentiate both sides and solve further by substituting it back to the main integral and use basic trigonometric identities to get the answer.

Complete step-by-step answer:

Let I=sec2x(secx+tanx)92dxI = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx}
Substitute secx+tanx=t\sec x + \tan x = t………………… (1)
So differentiate it w.r.t. x we have,
(secxtanx+sec2x)dx=dt\Rightarrow \left( {\sec x\tan x + {{\sec }^2}x} \right)dx = dt
Now simplify it we have,
secx(tanx+secx)dx=dt\Rightarrow \sec x\left( {\tan x + \sec x} \right)dx = dt
So from equation (1) we have
secxdx=dtt\Rightarrow \sec xdx = \dfrac{{dt}}{t}
Now from equation (1) the value of 1t\dfrac{1}{t} =1secx+tanx\dfrac{1}{{\sec x + \tan x}}………………….. (2)
Now add equation (1) and (2) we have,
t+1t=secx+tanx+1secx+tanxt + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}}
Now in extreme left most part multiply and divide by (secxtanx)\left( {\sec x - \tan x} \right) we have,
t+1t=secx+tanx+1secx+tanx×secxtanxsecxtanxt + \dfrac{1}{t} = \sec x + \tan x + \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}
Now in denominator it is in the form of (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}
t+1t=secx+tanx+secxtanxsec2xtan2x\Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}
And we know that the value of sec2xtan2x{\sec ^2}x - {\tan ^2}x is 1.
t+1t=secx+tanx+secxtanx=2secx\Rightarrow t + \dfrac{1}{t} = \sec x + \tan x + \sec x - \tan x = 2\sec x
secx=12(t+1t)\Rightarrow \sec x = \dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)………………….. (3)
So from equation (1), (2) and (3) the integral becomes
I=sec2x(secx+tanx)92dx=secx(t)92(dtt)=12(t+1t)(t)92+1dt\Rightarrow I = \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{9}{2}}}}}dx} = \int {\dfrac{{\sec x}}{{{{\left( t \right)}^{\dfrac{9}{2}}}}}\left( {\dfrac{{dt}}{t}} \right)} = \int {\dfrac{{\dfrac{1}{2}\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt
Now simplify the above integral we have,
I=12(t+1t)(t)92+1dt=12(tt112+1t112+1)dt=12(t92+t132)dt\Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + \dfrac{1}{t}} \right)}}{{{{\left( t \right)}^{\dfrac{9}{2} + 1}}}}} dt = \dfrac{1}{2}\int {\left( {\dfrac{t}{{{t^{\dfrac{{11}}{2}}}}} + \dfrac{1}{{{t^{\dfrac{{11}}{2} + 1}}}}} \right)} dt = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt}
Now as we know tndt=tn+1n+1+k\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} where k is some arbitrary integration constant, so use this property we have,
I=12(t92+t132)dt=12(t92+192+1+t132+1132+1)+k\Rightarrow I = \dfrac{1}{2}\int {\left( {{t^{\dfrac{{ - 9}}{2}}} + {t^{\dfrac{{ - 13}}{2}}}} \right)dt} = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{{ - 9}}{2} + 1}}}}{{\dfrac{{ - 9}}{2} + 1}} + \dfrac{{{t^{\dfrac{{ - 13}}{2} + 1}}}}{{\dfrac{{ - 13}}{2} + 1}}} \right) + k
Now simplify it we have,
I=12(27t72211t112)+k=17t72111t112+k=(17t72+111t112)+k\Rightarrow I = \dfrac{1}{2}\left( { - \dfrac{2}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{2}{{11}}{t^{\dfrac{{ - 11}}{2}}}} \right) + k = - \dfrac{1}{7}{t^{\dfrac{{ - 7}}{2}}} - \dfrac{1}{{11}}{t^{\dfrac{{ - 11}}{2}}} + k = - \left( {\dfrac{1}{{7{t^{\dfrac{7}{2}}}}} + \dfrac{1}{{11{t^{\dfrac{{11}}{2}}}}}} \right) + k
I=1t112(111+t27)+k\Rightarrow I = \dfrac{{ - 1}}{{{t^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{t^2}}}{7}} \right) + k
Now re-substitute the value of t we have,
I=1(secx+tanx)112(111+(secx+tanx)27)+k\Rightarrow I = - \dfrac{1}{{{{\left( {\sec x + \tan x} \right)}^{\dfrac{{11}}{2}}}}}\left( {\dfrac{1}{{11}} + \dfrac{{{{\left( {\sec x + \tan x} \right)}^2}}}{7}} \right) + k
So this is the required value of the integral.
Hence option (c) is correct.

Note: Whenever we face such type of problems the key concept is to have good list of the basic integration formula liketndt=tn+1n+1+k\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}} + k} . It helps in evaluating the main integral in the last after simplification. Never forget to add the constant of integration after performing the integration.