Solveeit Logo

Question

Question: Evaluate the integral \(\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.\)...

Evaluate the integral cos1(sinx) dx.\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.

Explanation

Solution

In this problem to find integral cos1(sinx) dx.\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx. we will convert sine function to cosine function using trigonometric formula. After converting sine to cosine we will use integration formula to compute the integral cos1(sinx) dx.\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.

Complete step by step answer:
Let I=cos1(sinx) dx.I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.
Now we will go to use conversion from sine function to cosine.
Since sinx=cos(π2x)\sin x=\cos \left( \dfrac{\pi }{2}-x \right)
I=cos1(cos(π2x)) dx.\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.
Since cos1(cos(π2x))=π2x{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x
I=(π2x) dx.\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.
I=π2 dxx dx.\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.
I=π21 dxx dx.\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.
Sincexn dx=xn+1n+1+c\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c},
Anddx=x+c\int{\text{1 }dx=x+c}, where c is integral constant
I=π2xx22+c.\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.
Hence, cos1(sinx) dx=π2xx22+c.\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.

Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.