Question
Mathematics Question on integral
Evaluate the integral: ∫02xx+2
Answer
∫02x+2dx
Let x+2=t2⧠dx=2tdt
When x=0,t=√2 and,when x=2,t=2
∴∫02x+2dx =∫2√2(t2-2)√t22tdt
=2∫2√2(t2-2)t2dt
=2∫2√2(t4-2t2)dt
=2[t5/5-2t3/3]2√2
=2[532−316−54√2+34√2]
=2[1596−80−12√2+20√2]
=2[16+8√2/15]
=1516(2+√2)
=1516√2(√2+1)