Solveeit Logo

Question

Mathematics Question on integral

Evaluate the integral: 02xx+2\int^2_0 x\sqrt{x+2}

Answer

02x+2dx\int_{0}^{2} \sqrt{x+2} \,dx

Let x+2=t2⧠dx=2tdt

When x=0,t=√2 and,when x=2,t=2

02x+2dx\int_{0}^{2} \sqrt{x+2} \,dx =∫2√2(t2-2)√t22tdt

=2∫2√2(t2-2)t2dt

=2∫2√2(t4-2t2)dt

=2[t5/5-2t3/3]2√2

=2[325163425+423\frac{32}{5}-\frac{16}{3}-\frac{4√2}{5}+\frac{4√2}{3}]

=2[9680122+20215\frac{96-80-12√2+20√2}{15}]

=2[16+8√2/15]

=16(2+2)15\frac{16(2+√2)}{15}

=162(2+1)15\frac{16√2(√2+1)}{15}