Solveeit Logo

Question

Mathematics Question on integral

Evaluate the integral: 0π/2sinϕcos5ϕdϕ\int_{0}^{π/2} \sqrt{\sin \phi}\cos^5 \phi\, d\,\phi

Answer

Let II=0π/2sinϕcos5ϕdϕ\int_{0}^{π/2} \sqrt{\sin \phi}\cos^5 \phi\, d\,\phi=0π/2sinϕcos4ϕdϕ\int_{0}^{π/2} \sqrt{\sin \phi}\cos^4 \phi\, d\,\phi

Also, let sinϕ=tcosϕdϕ=dt\sin \phi=t\Rightarrow \cos \phi d\phi=dt

When ϕ\phi =0,t=0 and when ϕ=π2,t=1\phi=\frac{\pi}{2},t=1

I=01t(1t2)dtI=\int^1_0\sqrt{t}(1-t^2)dt

= I=01t12(1+t42t2)dtI=\int^1_0t^{\frac{1}{2}}(1+t^4-2t^2)dt

=I=01[t12+t922t52]dtI=\int^1_0\bigg[t^{\frac{1}{2}}+t^{\frac{9}{2}}-2t^{\frac{5}{2}}\bigg]dt

=[t3232+t1121122t7272]01\bigg[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}-\frac{2t^{\frac{7}{2}}}{\frac{7}{2}}\bigg]^1_0

=23+21147\frac{2}{3}+\frac{2}{11}-\frac{4}{7}

=154+42132231\frac{154+42-132}{231}

=64231\frac{64}{231}