Solveeit Logo

Question

Question: Evaluate the integral: \(\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\). (a) ...

Evaluate the integral:
0π2secxsecx+cosecxdx\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}.
(a) π3\dfrac{\pi }{3}
(b) π2\dfrac{\pi }{2}
(c) π4\dfrac{\pi }{4}
(d) π8\dfrac{\pi }{8}

Explanation

Solution

Hint: Assume the integral be equal to ‘II’. Change secθ\sec \theta and cosecθ\cos ec\theta into their respective reciprocals. Then use the property of definite integral given by: abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx to simplify the integral.

Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx.
Now, let us come to the question. Let us assume the given integral is ‘II’. Therefore,
I=0π2secxsecx+cosecxdxI=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}
Now, we use the transformations, secθ=1cosθ and cosecθ=1sinθ\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }.
I=0π21cosx1cosx+1sinxdx =0π2cosxsinxcosx(cosx+sinx)dx =0π2sinxcosx+sinxdx......................(i) \begin{aligned} & \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\\ & =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\\ & =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\\ \end{aligned}
Now, using the property, abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx, we get, I=0π2sin(π2+0x)cos(π2+0x)+sin(π2+0x)dx =0π2sin(π2x)cos(π2x)+sin(π2x)dx \begin{aligned} & I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\\ & =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\\ \end{aligned}
Using complementary angle rule, sin(π2θ)=cosθ and cos(π2θ)=sinθ\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta , we have,
I=0π2cosxsinx+cosxdx.....................(ii)I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)
Adding equations (i) and (ii), we get,

& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\\ & \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\\ & \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\\ & \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\\ & \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\\ & \text{ }=\dfrac{\pi }{2} \\\ & \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\\ & \text{ }=\dfrac{\pi }{4} \\\ \end{aligned}$$ Hence, option (c) is the correct answer. Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.