Question
Question: Evaluate the integral: \(\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\). (a) ...
Evaluate the integral:
∫02πsecx+cosecxsecxdx.
(a) 3π
(b) 2π
(c) 4π
(d) 8π
Solution
Hint: Assume the integral be equal to ‘I’. Change secθ and cosecθ into their respective reciprocals. Then use the property of definite integral given by: a∫bf(x)dx=a∫bf(a+b−x)dx to simplify the integral.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, a∫bf(x)dx=a∫bf(a+b−x)dx.
Now, let us come to the question. Let us assume the given integral is ‘I’. Therefore,
I=∫02πsecx+cosecxsecxdx
Now, we use the transformations, secθ=cosθ1 and cosecθ=sinθ1.
∴I=∫02πcosx1+sinx1cosx1dx=∫02πcosx(cosx+sinx)cosxsinxdx=∫02πcosx+sinxsinxdx......................(i)
Now, using the property, a∫bf(x)dx=a∫bf(a+b−x)dx, we get, I=∫02πcos(2π+0−x)+sin(2π+0−x)sin(2π+0−x)dx=∫02πcos(2π−x)+sin(2π−x)sin(2π−x)dx
Using complementary angle rule, sin(2π−θ)=cosθ and cos(2π−θ)=sinθ, we have,
I=∫02πsinx+cosxcosxdx.....................(ii)
Adding equations (i) and (ii), we get,