Question
Mathematics Question on integral
Evaluate the integral: ∫04sin−11+x22xdx
Answer
Let I =∫04sin−11+x22xdx
Also ,let x=tanθ ⇒ dx=sec2θdθ
When x=0, θ =0 and when x=1, θ =4π
I=∫04πsin−1 \frac{(2tanθ}{1+tan^2θ)}$$\sec^2\theta d\theta
=∫04πsin−1(sin2θ)sec2θdθ
=∫04π2θ.sec2θdθ
=2∫04πθ.sec2θdθ
Taking θ as first function and sec2 θ as second function and integrating by parts, we obtain
I=2\bigg[\theta\int\sec^2 \theta d\theta-\int\bigg\\{\bigg(\frac{d}{dx}\theta\bigg)\int\sec^2\theta d\theta\bigg\\}d \theta\bigg]^{\frac{\pi}{4}}_0
=2[θtanθ−∫tanθdθ]04π
=2[θtanθ+log∣cosθ∣]04π
=2[4πtan4π+log∣cos4π∣−log∣cos0∣]
=2[4π+log(21)−log1]
=2[4π−21log2]
=2π-log 2