Solveeit Logo

Question

Mathematics Question on integral

Evaluate the integral: 04sin12x1+x2dx\int_{0}^{4} \sin^{-1} \frac{2x}{1+x^2}\,dx

Answer

Let II =04sin12x1+x2dx\int_{0}^{4} \sin^{-1} \frac{2x}{1+x^2}\,dx

Also ,let x=tanθ\tan \theta dx=sec2θdθ\sec^2 \theta d\theta

When x=0, θ\theta =0 and when x=1, θ\theta =π4\frac {π}{4}

II=0π4sin1\int^{\frac{\pi}{4}}_0 \sin^{-1} \frac{(2tanθ}{1+tan^2θ)}$$\sec^2\theta d\theta

=0π4sin1(sin2θ)sec2θdθ\int^{\frac{\pi}{4}}_0 \sin^{-1}(\sin2\theta)\sec^2 \theta d \theta

=0π42θ.sec2θdθ\int^{\frac{\pi}{4}}_0 2\theta.\sec^2 \theta d\theta

=20π4θ.sec2θdθ2\int^{\frac{\pi}{4}}_0 \theta.\sec^2 \theta d\theta

Taking θ as first function and sec2 θ\theta as second function and integrating by parts, we obtain

I=2\bigg[\theta\int\sec^2 \theta d\theta-\int\bigg\\{\bigg(\frac{d}{dx}\theta\bigg)\int\sec^2\theta d\theta\bigg\\}d \theta\bigg]^{\frac{\pi}{4}}_0

=2[θtanθtanθdθ]0π42\bigg[\theta \tan \theta-\int\tan \theta d\theta\bigg]^{\frac{\pi}{4}}_0

=2[θtanθ+logcosθ]0π42[\theta \tan \theta+\log|\cos \theta|]^{\frac{\pi}{4}}_0

=2[π4tanπ4+logcosπ4logcos0]2\bigg[\frac{\pi}{4}\tan\frac{\pi}{4}+\log|\cos \frac{\pi}{4}|-\log|\cos 0|\bigg]

=2[π4+log(12)log1]2\bigg[\frac{\pi}{4}+\log\bigg(\frac{1}{\sqrt2}\bigg)-\log1\bigg]

=2[π412log2]2\bigg[\frac{\pi}{4}-\frac{1}{2}\log2\bigg]

=π2\frac {π}{2}-log 2