Solveeit Logo

Question

Mathematics Question on integral

Evaluate the integral: 02dxx+4x2\int_{0}^{2}\frac{dx}{x+4-x^2}

Answer

02dxx+4x2\int_{0}^{2}\frac{dx}{x+4-x^2}=02dx(x2x4)\int_{0}^{2}\frac{dx}{-(-x^2-x-4)}

=02dxx2x+14144\int_{0}^{2}\frac{dx}{x^2-x+\frac{1}{4}-\frac{1}{4}-4}

=02dx[(x12)2174]\int_{0}^{2}\frac{dx}{-[(x-\frac{1}{2})^2-\frac{17}{4}]}

=02dx(172)2(x12)2\int_{0}^{2}\frac{dx}{(\sqrt{\frac{17}{2}})^2-(\frac{x-1}{2})^2}

Let x-12\frac{1}{2}=t \therefore dx=dt

When x=0,t=12-\frac{1}{2} and when x=2,t=32\frac{3}{2}

Evaluate the integral: ∫20dx/x+4-x2