Question
Mathematics Question on Definite Integral
Evaluate the integral ∫01(a+bx2)2a−bx2,dx:
A
a+ba−b
B
a−b1
C
2a+b
D
a+b1
Answer
a+b1
Explanation
Solution
We start with the integral:
∫01(a+bx2)2a−bx2dx
Let u=a+bx2, so:
du=2bxdxandxdx=2bdu.
The limits change as follows:
For x=0⇒u=a and for x=1⇒u=a+b.
Substitute into the integral:
∫aa+bu22a−u⋅2b1du.
Simplify:
2b1∫aa+b(u22a−u1)du.
Solve each term: For ∫aa+bu22adu:
∫u22adu=−u2a.
Evaluate:
−a+b2a+a2a.
For ∫aa+bu1du:
ln(a+b)−ln(a).
Combine results:
2b1(−a+b2a+2−(ln(a+b)−ln(a))).
Final simplification gives:
∫01(a+bx2)2a−bx2dx=a+b1.