Solveeit Logo

Question

Mathematics Question on Definite Integral

Evaluate the integral 01abx2(a+bx2)2,dx\int_0^1 \frac{a - bx^2}{(a + bx^2)^2} , dx:

A

aba+b\frac{a - b}{a + b}

B

1ab\frac{1}{a - b}

C

a+b2\frac{a + b}{2}

D

1a+b\frac{1}{a + b}

Answer

1a+b\frac{1}{a + b}

Explanation

Solution

We start with the integral:

01abx2(a+bx2)2dx\int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx

Let u=a+bx2u = a + bx^2, so:

du=2bxdxandxdx=du2b.du = 2bx \, dx \quad \text{and} \quad x \, dx = \frac{du}{2b}.

The limits change as follows:

For x=0u=ax = 0 \Rightarrow u = a and for x=1u=a+bx = 1 \Rightarrow u = a + b.

Substitute into the integral:

aa+b2auu212bdu.\int_{a}^{a+b} \frac{2a - u}{u^2} \cdot \frac{1}{2b} \, du.

Simplify:

12baa+b(2au21u)du.\frac{1}{2b} \int_{a}^{a+b} \left( \frac{2a}{u^2} - \frac{1}{u} \right) du.

Solve each term: For aa+b2au2du\int_{a}^{a+b} \frac{2a}{u^2} du:

2au2du=2au.\int \frac{2a}{u^2} du = -\frac{2a}{u}.

Evaluate:

2aa+b+2aa.-\frac{2a}{a + b} + \frac{2a}{a}.

For aa+b1udu\int_{a}^{a+b} \frac{1}{u} du:

ln(a+b)ln(a).\ln(a + b) - \ln(a).

Combine results:

12b(2aa+b+2(ln(a+b)ln(a))).\frac{1}{2b} \left( -\frac{2a}{a + b} + 2 - (\ln(a + b) - \ln(a)) \right).

Final simplification gives:

01abx2(a+bx2)2dx=1a+b.\int_{0}^{1} \frac{a - bx^2}{(a + bx^2)^2} dx = \frac{1}{a + b}.