Question
Mathematics Question on Methods of Integration
Evaluate the integral ∫013+x+1+x1dx Given that the integral can be expressed in the form a+b2+c3, where a,b,c are rational numbers, find the value of 2a+3b−4c.
A
4
B
10
C
7
D
8
Answer
8
Explanation
Solution
Given:
∫013x+3x+31+x1dx
Step 1: Rationalizing the Denominator
Rationalize the denominator:
∫(3x+x+3x−x)3x+x−3x−xdx=∫23x+xdx
Step 2: Separating the Integral
Separate the integral:
21(∫31+xdx−∫31−xdx)
Step 3: Evaluating the Integrals
1. For ∫31+xdx:
∫31+xdx=23⋅43⋅2+52⇒23(2+33−23/2)=23(3−33)
2. For ∫31−xdx:
∫31−xdx=23(3−3)=23(25−1)
Step 4: Combining the Results
Combine the results:
23(3+3)−23(33−1)=a+b2+3
From this, we find:
a=3,b=−32,c=−1
Calculate:
2a+3b−c=234+33−4−4(−1)=8