Solveeit Logo

Question

Mathematics Question on Methods of Integration

Evaluate the integral 0113+x+1+xdx\int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} \, dx Given that the integral can be expressed in the form a+b2+c3a + b\sqrt{2} + c\sqrt{3}, where a,b,ca, b, c are rational numbers, find the value of 2a+3b4c2a + 3b - 4c.

A

44

B

1010

C

77

D

88

Answer

88

Explanation

Solution

Given:

011x3+x3+1+x3dx\int_0^1 \frac{1}{\sqrt[3]{x} + \sqrt[3]{x} + \sqrt[3]{1 + x}} \, dx

Step 1: Rationalizing the Denominator

Rationalize the denominator:
x+x3xx3(x+x3+xx3)dx=x+x32dx\int \frac{\sqrt[3]{x + \sqrt{x}} - \sqrt[3]{x - \sqrt{x}}}{\left(\sqrt[3]{x + \sqrt{x}} + \sqrt[3]{x - \sqrt{x}}\right)} \, dx = \int \frac{\sqrt[3]{x + \sqrt{x}}}{2} \, dx

Step 2: Separating the Integral

Separate the integral:

12(1+x3dx1x3dx)\frac{1}{2} \left( \int \sqrt[3]{1 + \sqrt{x}} \, dx - \int \sqrt[3]{1 - \sqrt{x}} \, dx \right)

Step 3: Evaluating the Integrals

1. For 1+x3dx\int \sqrt[3]{1 + \sqrt{x}} \, dx:
1+x3dx=32342+2532(2+3323/2)=32(333)\int \sqrt[3]{1 + \sqrt{x}} \, dx = \frac{3}{2} \cdot \frac{3}{4} \cdot 2 + \frac{2}{5} \Rightarrow \frac{3}{2} \left( 2 + \sqrt[3]{3} - 2^{3/2} \right) = \frac{3}{2} (3 - 3\sqrt{3})

2. For 1x3dx\int \sqrt[3]{1 - \sqrt{x}} \, dx:

1x3dx=32(33)=32(251)\int \sqrt[3]{1 - \sqrt{x}} \, dx = \frac{3}{2} (3 - \sqrt{3}) = \frac{3}{2} (2\sqrt{5} - 1)

Step 4: Combining the Results

Combine the results:

32(3+3)32(331)=a+b2+3\frac{3}{2} (3 + \sqrt{3}) - \frac{3}{2} (3\sqrt{3} - 1) = a + b \sqrt{2 + \sqrt{3}}

From this, we find:
a=3,b=23,c=1a = 3, \quad b = -\frac{2}{3}, \quad c = -1
Calculate:
2a+3bc=243+3434(1)=82a + 3b - c = 2\frac{4}{3} + 3\frac{-4}{3} - 4(-1)=8