Solveeit Logo

Question

Question: Evaluate the integral and then fill in the blanks for \(\int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}=.....

Evaluate the integral and then fill in the blanks for xsinxxcosxsinx1dx=.....+C\int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}=.....+C
A. logxsinxcosx1-\log \left| x\sin x-\cos x-1 \right|
B. logxsinxcosx1\log \left| x\sin x-\cos x-1 \right|
C. logxcosxsinx1-\log \left| x\cos x-\sin x-1 \right|
D. logxcosxsinx1\log \left| x\cos x-\sin x-1 \right|

Explanation

Solution

In this problem we have to calculate the integral value of the given equation. From this we are going to use the substitution method by substituting u=xcosxsinx1u=x\cos x-\sin x-1 and calculate the value of dudu. We will use the uvuv formula of differentiation which is (uv)=uv+vu{{\left( uv \right)}^{'}}=u{{v}^{'}}+v{{u}^{'}} and simplify the equation to get the value of dudu. After getting the value of dudu, we will substitute uu, dudu in the given integration and simplify the equation. Now we will use the integration formula dxx=logx+C\int{\dfrac{dx}{x}}=\log \left| x \right|+C and calculate the required value.

Complete step by step solution:
Given that, xsinxxcosxsinx1dx=.....+C\int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}=.....+C.
Considering the integration part which is xsinxxcosxsinx1dx\int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}.
To solve the above integration part, we are going to use the substitution method. So, we are going to substitute u=xcosxsinx1u=x\cos x-\sin x-1 in the integration part. Before substituting this value, we also need the value of dudu. For this we are going to differentiate the value u=xcosxsinx1u=x\cos x-\sin x-1 with respect to xx, then we will get
dudx=ddx(xcosxsinx1)\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( x\cos x-\sin x-1 \right)
Applying the differentiation for each term, then we will get
dudx=ddx(xcosx)ddx(sinx)ddx(1)\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( x\cos x \right)-\dfrac{d}{dx}\left( \sin x \right)-\dfrac{d}{dx}\left( 1 \right)
We have the differentiation formula ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x, ddx(1)=0\dfrac{d}{dx}\left( 1 \right)=0. Substituting these values in the above equation, then we will get
dudx=ddx(xcosx)cosx\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( x\cos x \right)-\cos x
Using the differentiation formula (uv)=uv+vu{{\left( uv \right)}^{'}}=u{{v}^{'}}+v{{u}^{'}} in the above equation, then we will get
dudx=xddx(cosx)+cosxddx(x)cosx\Rightarrow \dfrac{du}{dx}=x\dfrac{d}{dx}\left( \cos x \right)+\cos x\dfrac{d}{dx}\left( x \right)-\cos x
We know that ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x, ddx(x)=1\dfrac{d}{dx}\left( x \right)=1. Substituting these values and simplifying the equation, then we will get
dudx=x(sinx)+cosxcosx du=xsinxdx \begin{aligned} & \Rightarrow \dfrac{du}{dx}=x\left( -\sin x \right)+\cos x-\cos x \\\ & \Rightarrow du=-x\sin xdx \\\ \end{aligned}
From the values u=xcosxsinx1u=x\cos x-\sin x-1, du=xsinxdxdu=-x\sin xdx, the given integration value modified as
xsinxxcosxsinx1dx=1u(du) xsinxxcosxsinx1dx=duu \begin{aligned} & \Rightarrow \int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}=\int{\dfrac{1}{u}\left( -du \right)} \\\ & \Rightarrow \int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}=-\int{\dfrac{du}{u}} \\\ \end{aligned}
We know that dxx=logx+C\int{\dfrac{dx}{x}=\log \left| x \right|+C}, then we will have
xsinxxcosxsinx1dx=logxcosxsinx1+C\Rightarrow \int{\dfrac{x\sin x}{x\cos x-\sin x-1}dx}=-\log \left| x\cos x-\sin x-1 \right|+C
Hence option – C is the correct answer.

Note: We can also use the formula f(x)f(x)dx=logf(x)+C\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\log \left| f\left( x \right) \right|+C for the above problem. We can use this formula after calculating the derivative of the denominator and use this formula to get the required result.