Question
Mathematics Question on integral
Evaluate the integral: ∫12(x1−2x21)e2x dx
Answer
∫12(x1−2x21)e2x dx
Let 2x=t⇒2dx=dt
When x=1,t=2 and when x=2,t=4
∴∫12(x1−2x21)e2x dx = 21∫24(t2−t22)et dt
Let t1=ƒ(t)
Then, ƒ(t)=−t21
⇒$$∫_2^4(\frac 1t-\frac {1}{t^2})e^t\ dt = ∫224et[ƒ(t)+ƒ′(t)]dt
= [etƒ(t)]24
= [et.t2]24
= [tet]24
= 4e4−2e2
= 4e2(e2−2)