Solveeit Logo

Question

Mathematics Question on integral

Evaluate the integral: 12(1x12x2)e2x dx∫_1^2(\frac 1x-\frac {1}{2x^2})e^{2x}\ dx

Answer

12(1x12x2)e2x dx∫_1^2(\frac 1x-\frac {1}{2x^2})e^{2x}\ dx

Let 2x=t2dx=dtLet\ 2x=t ⇒ 2dx=dt

When x=1,t=2 and when x=2,t=4When \ x = 1, t = 2 \ and\ when \ x = 2, t = 4

12(1x12x2)e2x dx∫_1^2(\frac 1x-\frac {1}{2x^2})e^{2x}\ dx = 1224(2t2t2)et dt\frac 12∫_2^4(\frac 2t-\frac {2}{t^2})e^t\ dt

Let 1t=ƒ(t)Let \ \frac 1t=ƒ(t)

Then, ƒ(t)=1t2Then,\ ƒ(t)=-\frac {1}{t^2}

⇒$$∫_2^4(\frac 1t-\frac {1}{t^2})e^t\ dt = 224et[ƒ(t)+ƒ(t)]dt∫_2^24e^t[ƒ(t)+ƒ'(t)]dt

= [etƒ(t)]24[e^tƒ(t)]_2^4

= [et.2t]24[e^t.\frac 2t]_2^4

= [ett]24[\frac {e^t}{t}]_2^4

= e44e22\frac {e^4}{4}-\frac {e^2}{2}

= e2(e22)4\frac {e^2(e^2-2)}{4}