Question
Mathematics Question on integral
Evaluate the integral: ∫−11x2+2x+5dx
Answer
∫−11x2+2x+5dx= ∫−11(x2+2x+1)+4dx = ∫−11(x+1)2+22dx
Let x+1=t⟹dx=dt
When x=−1,t=0 and whenx=1,t=2
∴∫−11(x+1)2+22dx = ∫02t2+22dt
=$[\frac 12 tan^{-1}\frac t2]_0^2$
=$\frac 12 tan^{-1}1-\frac 12 tan^{-1}0$
=$\frac 12(\frac \pi4)$
=$\frac\pi8$