Solveeit Logo

Question

Mathematics Question on integral

Evaluate the integral: 0π2sinx1+cos2xdx∫_0^{\frac \pi2} \frac {sinx}{1+cos^2x}dx

Answer

0π2sin x1+cos2xdx∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx

Let cosx=tsinx dx=dtLet \ cosx=t ⇒ -sinx \ dx=dt

When x=0,t=1 and when x=π2,t=0When\ x=0,t=1 \ and\ when \ x=\frac \pi2,t=0

⇒∫0π2sin x1+cos2xdx∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx = 10dt1+t2-∫_1^0\frac {dt}{1+t^2}

                               =$-[tan^{-1}t]_1^0$

                               =$-[tan^{-1}0-tan^{-1}1]$

                               =$-[-\frac \pi4]$

                               =$\frac \pi4$