Question
Mathematics Question on integral
Evaluate the integral: ∫02π1+cos2xsinxdx
Answer
∫02π1+cos2xsin xdx
Let cosx=t⇒−sinx dx=dt
When x=0,t=1 and when x=2π,t=0
⇒∫∫02π1+cos2xsin xdx = −∫101+t2dt
=$-[tan^{-1}t]_1^0$
=$-[tan^{-1}0-tan^{-1}1]$
=$-[-\frac \pi4]$
=$\frac \pi4$