Question
Question: Evaluate the given trigonometric integral \[\int{\tan x\tan 2x\tan 3xdx}\]....
Evaluate the given trigonometric integral ∫tanxtan2xtan3xdx.
Solution
Hint: Write tan3x=tan(x+2x)and use the formula tan(A+B)=1−tanAtanBtanA+tanBto get tan3xin terms of tanx and tan2x.
Complete step-by-step solution -
We know ∫tanx=log∣secx∣.
Use this and compute further.
We have to find ∫tanxtan2xtan3xdx.
Let us assume I=∫tanxtan2xtan3xdx.
We can write tan(3x)=tan(x+2x).
We know, tan(A+B)=1−tanAtanBtanA+tanB.
⇒tan3x=tan(x+2x)=1−tanAtanBtanA+tanB⇒tan3x=1−tanxtan2xtanx+tan2x
On multiplying both sides by (1−tanxtan2x), we will get;
⇒tan3x(1−tanxtan2x)=(1−tanxtan2x)(tanx+tan2x)×(1−tanxtan2x)⇒tan3x(1−tanxtan2x)=tanx+tan2x⇒tan3x−tanxtan2xtan3x=tanx+tan2x
Taking tan3x to RHS, we will get;
⇒−tanxtan2xtan3x=tanx+tan2x−tan3x
Multiplying both sides of equation by (-1), we will get;
tanxtan2xtan3x=tan3x−tanx−tan2x
On putting this value of tanxtan2xtan3x in I, we will get,
I=∫(tan3x−tanx−tan2x)dx
We know,