Solveeit Logo

Question

Question: Evaluate the given trigonometric integral \[\int{\tan x\tan 2x\tan 3xdx}\]....

Evaluate the given trigonometric integral tanxtan2xtan3xdx\int{\tan x\tan 2x\tan 3xdx}.

Explanation

Solution

Hint: Write tan3x=tan(x+2x)\tan 3x=\tan \left( x+2x \right)and use the formula tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}to get tan3x\tan 3xin terms of tanx and tan2x\tan x\ and\ \tan 2x.

Complete step-by-step solution -
We know tanx=logsecx\int{\tan x=\log \left| \sec x \right|}.
Use this and compute further.
We have to find tanxtan2xtan3xdx\int{\tan x\tan 2x\tan 3xdx}.
Let us assume I=tanxtan2xtan3xdxI=\int{\tan x\tan 2x\tan 3xdx}.
We can write tan(3x)=tan(x+2x)\tan \left( 3x \right)=\tan \left( x+2x \right).
We know, tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}.
tan3x=tan(x+2x)=tanA+tanB1tanAtanB tan3x=tanx+tan2x1tanxtan2x \begin{aligned} & \Rightarrow \tan 3x=\tan \left( x+2x \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} \\\ & \Rightarrow \tan 3x=\dfrac{\tan x+\tan 2x}{1-\tan x\tan 2x} \\\ \end{aligned}
On multiplying both sides by (1tanxtan2x)\left( 1-\tan x\tan 2x \right), we will get;
tan3x(1tanxtan2x)=(tanx+tan2x)(1tanxtan2x)×(1tanxtan2x) tan3x(1tanxtan2x)=tanx+tan2x tan3xtanxtan2xtan3x=tanx+tan2x \begin{aligned} & \Rightarrow \tan 3x\left( 1-\tan x\tan 2x \right)=\dfrac{\left( \tan x+\tan 2x \right)}{\left( 1-\tan x\tan 2x \right)}\times \left( 1-\tan x\tan 2x \right) \\\ & \Rightarrow \tan 3x\left( 1-\tan x\tan 2x \right)=\tan x+\tan 2x \\\ & \Rightarrow \tan 3x-\tan x\tan 2x\tan 3x=\tan x+\tan 2x \\\ \end{aligned}
Taking tan3x\tan 3x to RHS, we will get;
tanxtan2xtan3x=tanx+tan2xtan3x\Rightarrow -\tan x\tan 2x\tan 3x=\tan x+\tan 2x-\tan 3x
Multiplying both sides of equation by (-1), we will get;
tanxtan2xtan3x=tan3xtanxtan2x\tan x\tan 2x\tan 3x=\tan 3x-\tan x-\tan 2x
On putting this value of tanxtan2xtan3x\tan x\tan 2x\tan 3x in I, we will get,
I=(tan3xtanxtan2x)dxI=\int{\left( \tan 3x-\tan x-\tan 2x \right)}dx
We know,

& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx=\int{f\left( x \right)dx+\int{g\left( x \right)dx+\int{h\left( x \right)dx}}}} \\\ & \Rightarrow I=\int{\tan 3xdx-}\int{\tan xdx-}\int{\tan 2xdx} \\\ \end{aligned}$$ We know, $$\begin{aligned} & \int{\tan \left( ax \right)dx=\dfrac{1}{a}}\log \left| \sec \left( ax \right) \right|+C \\\ & \Rightarrow I=\dfrac{1}{3}\log \left| \sec 3x \right|-1.\log \left| \sec x \right|-\dfrac{1}{2}\left| \sec 2x \right|+C \\\ \end{aligned}$$ Where ‘C’ is a constant of integration. Note: This is an indefinite integral, so don’t forget to add a constant of integration at last and also don’t forget to take the modulus of $\sec \left( ax \right)$ as the log of a number is defined only when the number is positive.