Solveeit Logo

Question

Question: Evaluate the given \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {x + 5} \right)}^5} - 1}}{x}\...

Evaluate the given limx0(x+5)51x\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {x + 5} \right)}^5} - 1}}{x} .

Explanation

Solution

This is the problem from limits and derivatives. We need to evaluate the limit here. But we will use one of the formulas or property of limits.
limx0xnanxa=n.an1\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n.{a^{n - 1}}

Complete step-by-step answer:
Given that,
limx0(x+5)51x\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {x + 5} \right)}^5} - 1}}{x}
Here let x+5=yx + 5 = y
x=y5\Rightarrow x = y - 5
Now we will replace x by y-5 in the limits above
limx0(y5+5)51y5\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {y - 5 + 5} \right)}^5} - 1}}{{y - 5}}
limx0(y)51y5\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( y \right)}^5} - 1}}{{y - 5}}
But we can write 1=151 = {1^5}
limx0(y)515y5\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( y \right)}^5} - {1^5}}}{{y - 5}}
Now limit above is of the form
limx0xnanxa\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^n} - {a^n}}}{{x - a}}
So we can write it in the form n.an1n.{a^{n - 1}}

5×151 5×14 5×1 5  \Rightarrow 5 \times {1^{5 - 1}} \\\ \Rightarrow 5 \times {1^4} \\\ \Rightarrow 5 \times 1 \\\ \Rightarrow 5 \\\

Thus
limx0(x+5)51x=5\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {x + 5} \right)}^5} - 1}}{x} = 5
This is our correct answer.

Note: Sometimes students directly write the value of x as 0 and try to solve but that will lead to 0 only. So first simplify the equation and then solve.
Some formulas like:

limx0ex=1 limx0ex1x=1 limx0ax1x=logea  \mathop {\lim }\limits_{x \to 0} {e^x} = 1 \\\ \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - 1}}{x} = 1 \\\ \mathop {\lim }\limits_{x \to 0} \dfrac{{{a^x} - 1}}{x} = {\log _e}a \\\