Solveeit Logo

Question

Question: Evaluate the given limit of the function: \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\cot }^{-1}}...

Evaluate the given limit of the function: limx0cot1(1x)x\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{x} \right)}{x}
(a) Exists and is equal to one
(b) Does not exist as R.H.L is 1 and L.H.L. is -1
(c) Does not exist as R.H.L and L.H.L both are non-existent
(d) Does not exist as R.H.L exits but L.H.L does not

Explanation

Solution

Hint: Apply the limit directly and observe that we will get an indeterminate form. Use L’Hopital Rule and chain rule of composition of two functions to find the exact limit of the given function.

Complete step-by-step answer:
We are given the function cot1(1x)x\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{x} \right)}{x}. We have to evaluate the limit limx0cot1(1x)x\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{x} \right)}{x}. We observe that if we simply apply the limit, we will get limx0cot1(1x)x=cot1(10)0=cot1()0=00\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{x} \right)}{x}=\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{0} \right)}{0}=\dfrac{{{\cot }^{-1}}\left( \infty \right)}{0}=\dfrac{0}{0}.
Hence, we will use L’Hopital Rule to evaluate the limit which states that if limxaf(x)g(x)=00\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0} then we have limxaf(x)g(x)=limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}.
Substituting f(x)=cot1(1x),g(x)=xf\left( x \right)={{\cot }^{-1}}\left( \dfrac{1}{x} \right),g\left( x \right)=x in the above equation, we have limxaf(x)g(x)=limxaf(x)g(x)limx0cot1(1x)x=limx0ddx(cot1(1x))ddx(x).....(1)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{x} \right)}{x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{\dfrac{d}{dx}\left( x \right)}.....\left( 1 \right).
To find the value of ddx(cot1(1x))\dfrac{d}{dx}\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right), we will write y=cot1(1x)y={{\cot }^{-1}}\left( \dfrac{1}{x} \right) as a composition of two functions y=u(v(x))y=u\left( v\left( x \right) \right) where u(x)=cot1x,v(x)=1xu\left( x \right)={{\cot }^{-1}}x,v\left( x \right)=\dfrac{1}{x}.
We will use chain rule of composition of two functions which states that if y=u(v(x))y=u\left( v\left( x \right) \right) then dydx=du(v(x))dv(x)×dv(x)dx\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}.
Substituting u(x)=cot1x,v(x)=1xu\left( x \right)={{\cot }^{-1}}x,v\left( x \right)=\dfrac{1}{x} in the above formula, we have dydx=d(cot1(1x))d(1x)×d(1x)dx.....(2)\dfrac{dy}{dx}=\dfrac{d\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{d\left( \dfrac{1}{x} \right)}\times \dfrac{d\left( \dfrac{1}{x} \right)}{dx}.....\left( 2 \right).
To find the value of d(cot1(1x))d(1x)\dfrac{d\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{d\left( \dfrac{1}{x} \right)}, let’s assume t=1xt=\dfrac{1}{x}.
Thus, we have d(cot1(1x))d(1x)=d(cot1t)dt\dfrac{d\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{d\left( \dfrac{1}{x} \right)}=\dfrac{d\left( {{\cot }^{-1}}t \right)}{dt}.
We know that differentiation of any function of the form y=cot1(x)y={{\cot }^{-1}}\left( x \right) is d(cot1x)dx=11+x2\dfrac{d\left( {{\cot }^{-1}}x \right)}{dx}=\dfrac{-1}{1+{{x}^{2}}}.
Thus, we have d(cot1t)dt=11+t2\dfrac{d\left( {{\cot }^{-1}}t \right)}{dt}=\dfrac{-1}{1+{{t}^{2}}}.
So, we will get d(cot1(1x))d(1x)=d(cot1t)dt=11+t2=11+1x2\dfrac{d\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{d\left( \dfrac{1}{x} \right)}=\dfrac{d\left( {{\cot }^{-1}}t \right)}{dt}=\dfrac{-1}{1+{{t}^{2}}}=\dfrac{-1}{1+\dfrac{1}{{{x}^{2}}}}.
Simplifying the above equation, we get d(cot1(1x))d(1x)=11+1x2=x21+x2.....(3)\dfrac{d\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{d\left( \dfrac{1}{x} \right)}=\dfrac{-1}{1+\dfrac{1}{{{x}^{2}}}}=\dfrac{-{{x}^{2}}}{1+{{x}^{2}}}.....\left( 3 \right).
To find the value of d(1x)dx\dfrac{d\left( \dfrac{1}{x} \right)}{dx}, substitute a=1,n=1a=1,n=-1 in the formula where if y=axny=a{{x}^{n}} then dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have d(1x)dx=1x2.....(4)\dfrac{d\left( \dfrac{1}{x} \right)}{dx}=\dfrac{-1}{{{x}^{2}}}.....\left( 4 \right).
Substituting equation (3)\left( 3 \right) and (4)\left( 4 \right) in equation (2)\left( 2 \right), we get dydx=d(cot1(1x))d(1x)×d(1x)dx=x21+x2×1x2=11+x2.....(5)\dfrac{dy}{dx}=\dfrac{d\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{d\left( \dfrac{1}{x} \right)}\times \dfrac{d\left( \dfrac{1}{x} \right)}{dx}=\dfrac{-{{x}^{2}}}{1+{{x}^{2}}}\times \dfrac{-1}{{{x}^{2}}}=\dfrac{1}{1+{{x}^{2}}}.....\left( 5 \right).
To find the value of ddx(x)\dfrac{d}{dx}\left( x \right), substitute a=1,n=1a=1,n=1 in the formula where if y=axny=a{{x}^{n}} then dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddx(x)=1.....(6)\dfrac{d}{dx}\left( x \right)=1.....\left( 6 \right).
Substituting the equation (5)\left( 5 \right) and (6)\left( 6 \right) in equation (1)\left( 1 \right), we get limx0cot1(1x)x=limx0ddx(cot1(1x))ddx(x)=limx011+x2=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\cot }^{-1}}\left( \dfrac{1}{x} \right)}{x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\cot }^{-1}}\left( \dfrac{1}{x} \right) \right)}{\dfrac{d}{dx}\left( x \right)}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{1+{{x}^{2}}}=1.
Hence, we observe that the limit exists and is equal to 1, which is option (a).

Note: It’s very necessary to use the L'Hopital Rule to find the limit of the given function. We won’t get the correct answer by directly substituting the limit. An indeterminate form is an expression involving two functions whose limit can’t be determined solely from the limits of the individual functions. Indeterminate forms of the functions include 00,,0×,,00,1,0\dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty ,{{0}^{0}},{{1}^{\infty }},{{\infty }^{0}}.