Solveeit Logo

Question

Mathematics Question on Limits

Evaluate the Given limit: limxπ\lim_{x\rightarrow \pi} sin(πx)π(πx)\frac{sin(\pi-x)}{\pi(\pi-x)}

Answer

limxπ\lim_{x\rightarrow \pi} sin(πx)π(πx)\frac{sin(\pi-x)}{\pi(\pi-x)}
It is seen that x\rightarrow \pi$$\Rightarrow (π\pi - x ) \rightarrow0
limxπ\lim_{x\rightarrow \pi} sin(πx)π(πx)\frac{sin(\pi-x)}{\pi(\pi-x)} = 1π\frac{1}{\pi} limπxπ\lim_{\pi-x\rightarrow \pi} sin(πx)(πx)\frac{sin(\pi-x)}{(\pi-x)}
= \frac{1}{\pi}$$\times1 [\lim_{y\rightarrow \pi}$$\frac{sin\,y}{y} = 1]
=1π\frac{1}{\pi}