Question
Mathematics Question on Limits
Evaluate the Given limit: limx→2πxtan2x−2π
Answer
limx→2πxtan2x−2π
At x =2π, the value of the given function takes the form 0/0.
Now, put x - 2π = y so that x\rightarrow$$\frac{\pi}{2} , y→0
∴ limx→2πxtan2x−2π = limy→0ytan2(y+2π)
= limy→0ytan(π+2y)
= limy→0ytan(2y) [ tan(π+2y) = tan2y]
= limy→0 ycos2ysin2y
=limy→0 (2ysin2y×cos2y2)
=( lim2y→0ysin2y×limy→0cos2y2)[ y→0⇒2y→0]
=1×cos02 [ limx→0 xsinx = 1]
=1×12
=2