Solveeit Logo

Question

Mathematics Question on Limits

Evaluate the Given limit: limxπ2tan2xxπ2\lim_{x\rightarrow \frac{\pi}{2}}\frac{tan\,2x}{x}-\frac{\pi}{2}

Answer

limxπ2tan2xxπ2\lim_{x\rightarrow \frac{\pi}{2}}\frac{tan\,2x}{x}-\frac{\pi}{2}
At x =π2\frac{\pi}{2}, the value of the given function takes the form 0/0.
Now, put x - π2\frac{\pi}{2} = y so that x\rightarrow$$\frac{\pi}{2} , y\rightarrow0
limxπ2tan2xxπ2\lim_{x\rightarrow \frac{\pi}{2}}\frac{tan\,2x}{x}-\frac{\pi}{2} = limy0tan2(y+π2)y\lim_{y\rightarrow 0}\frac{tan\,2(y+\frac{\pi}{2})}{y}
= limy0tan(π+2y)y\lim_{y\rightarrow 0}\frac{tan(\pi+2y)}{y}
= limy0tan(2y)y\lim_{y\rightarrow 0}\frac{tan(2y)}{y} [ tan(π\pi+2y) = tan2y]
= limy0\lim_{y\rightarrow 0} sin2yycos2y\frac{sin\,2y}{y\,cos\,2y}
=limy0\lim_{y\rightarrow 0} (sin2y2y×2cos2y\frac{sin\,2y}{2y}\times\frac{2}{cos\,2y})
=( lim2y0sin2yy×limy02cos2y\lim_{2y\rightarrow 0}\frac{sin\,2y}{y}\times\lim_{y\rightarrow 0}\frac{2}{cos2y})[ y\rightarrow0\Rightarrow2y\rightarrow0]
=1×2cos01\times \frac{2}{cos\,0} [ limx0\lim_{x\rightarrow 0} sinxx\frac{sin\,x}{x} = 1]
=1×211\times\frac{2}{1}
=2