Solveeit Logo

Question

Mathematics Question on Limits

Evaluate the Given limit: limx0(cosecxcotx)\lim_{x\rightarrow 0}(cosec\,x-cot\,x)

Answer

limx0(cosecxcotx)\lim_{x\rightarrow 0}(cosec\,x-cot\,x)
At x = 0, the value of the given function takes the form ∞ to -∞.
Now,
=limx0(cosecxcotx)\lim_{x\rightarrow 0}(cosec\,x-cot\,x)
= limx0(1xcosxsinx)\lim_{x\rightarrow 0}(\frac{1}{x}-\frac{cos\,x}{sin\,x})
= limx0(1cosxsinx)\lim_{x\rightarrow 0}({1}-\frac{cos\,x}{sin\,x})
= limx0\lim_{x\rightarrow 0} 1cisxxxsonxx\frac{1-\frac{cis\,x}{x}}{\frac{x}{\frac{son\,x}{x}}}
=limx01cosxxlimx0sinxx\frac{\lim_{x\rightarrow 0}1-\frac{cos\,x}{x}}{\lim_{x\rightarrow 0}\frac{sin\,x}{x}}
= 01\frac{0}{1} [= limx0\lim_{x\rightarrow 0} ( 1cosxx1-\frac{cos\,x}{x}) = 0 and limx0\lim_{x\rightarrow 0} sinxx\frac{sin\,x}{x} = 1]
=0