Question
Mathematics Question on Limits
Evaluate the Given limit: limx→0(cosecx−cotx)
Answer
limx→0(cosecx−cotx)
At x = 0, the value of the given function takes the form ∞ to -∞.
Now,
=limx→0(cosecx−cotx)
= limx→0(x1−sinxcosx)
= limx→0(1−sinxcosx)
= limx→0 xsonxx1−xcisx
=limx→0xsinxlimx→01−xcosx
= 10 [= limx→0 ( 1−xcosx) = 0 and limx→0 xsinx = 1]
=0