Question
Mathematics Question on Limits
Evaluate the Given limit: limx→0 sinax =axbx+ sinbx a,b,a+b ≠ 0
Answer
limx→0sinax = axbx+sinbx
At x = 0, the value of the given function takes the form 0/0.
Now,
= limx→0 sinax = axbx+sinbx
= limx→0 (axsinax) ax + axbx + bx(bxsinbx)
=(limax→0 axsinax) × limx→0(ax) + limx→0bx / limx→0(ax) + (limbx→0 bxsinbx) [As x→0⇒ax→0 and bx→0]
=limx→0ax+limx→0bxlimx→0(ax)limx→0bx
=limx→0(ax+bx)limx→0(ax+bx)
=limx→0 (1)
=1