Solveeit Logo

Question

Mathematics Question on Limits

Evaluate the Given limit: limx0\lim_{x\rightarrow 0} cos2x1cosx1\frac{cos^2x-1}{cos\,x-1}

Answer

limx0\lim_{x\rightarrow 0} cos2x1cosx1\frac{cos^2x-1}{cos\,x-1}
At x = 0, the value of the given function takes the form 0/0.
Now,
=limx0\lim_{x\rightarrow 0} cos2x1cosx1\frac{cos^2x-1}{cos\,x-1} =limx0\lim_{x\rightarrow 0} 12sin2x112sin2x21\frac{1-2sin^2x-1}{1-2sin^2\frac{x}{2}-1} [cosx = 1 - 2sin2x2\frac{x}{2}]
=limx0\lim_{x\rightarrow 0} sin2xsin2x2\frac{sin^2x}{\frac{sin^2x}{2}} = limx0\lim_{x\rightarrow 0} (sin2x2\frac{sin^2x}{2})\times$$\frac{x^2}{\frac{sin^2x}{2}}$$\times$$\frac{2}{4}
=4limx0(sin2xx2)limx0(sin2x2x22)\frac{4\lim_{x\rightarrow 0}(\frac{sin^2x}{x^2})}{\lim_{x\rightarrow 0}(\frac{sin^2\frac{x}{2}}{\frac{x}{2}^2})}
=4 \times$$\frac{12}{12} [limy0\lim_{y\rightarrow 0} sinyy\frac{sin\,y}{y} = 1]
=4