Question
Mathematics Question on Limits
Evaluate the Given limit: limx→0 cosx−1cos2x−1
Answer
limx→0 cosx−1cos2x−1
At x = 0, the value of the given function takes the form 0/0.
Now,
=limx→0 cosx−1cos2x−1 =limx→0 1−2sin22x−11−2sin2x−1 [cosx = 1 - 2sin22x]
=limx→0 2sin2xsin2x = limx→0 (2sin2x)\times$$\frac{x^2}{\frac{sin^2x}{2}}$$\times$$\frac{2}{4}
=limx→0(2x2sin22x)4limx→0(x2sin2x)
=4 \times$$\frac{12}{12} [limy→0 ysiny = 1]
=4