Solveeit Logo

Question

Mathematics Question on Limits

Evaluate the Given limit: limx0\lim_{x\rightarrow 0} sinaxsinbx\frac{sin\,ax}{sin\,bx} ,a,b ≠0

Answer

At x = 0, the value of the given function takes the form 0/0.
limx0\lim_{x\rightarrow 0} sinaxsinbx\frac{sin\,ax}{sin\,bx} = limx0\lim_{x\rightarrow 0} (sinaxax\frac{sin\,ax}{ax} ) ×\times ax / (sinbxbx\frac{sin\,bx}{bx}) ×\times bx
absinaxaxlimax0limbx0sinbxbx\frac{\frac{a}{b}\frac{sin\,ax}{ax}\lim_{ax\rightarrow 0}}{\lim_{bx\rightarrow 0}\frac{sin\,bx}{bx}}[x→0 \Rightarrowax → 0 and x→0 ⇒ bx → 0 ]
=(ab\frac{a}{b}) ×\times 11\frac{1}{1} [limy0\lim_{y\rightarrow 0} sinyy\frac{sin\,y}{y} = 1]
= ab\frac{a}{b}