Solveeit Logo

Question

Mathematics Question on Limits

Evaluate the Given limit: \lim_{x\rightarrow 0}$$\frac{sin\,ax}{bx}

Answer

At x = 0, the value of the given function takes the form 0/0.
\lim_{x\rightarrow 0}$$\frac{sin\,ax}{bx}= limx0\lim_{x\rightarrow 0} sinaxbx\frac{sin\,ax}{bx} ×\times axbx\frac{ax}{bx}
limx0\lim_{x\rightarrow 0} (sinaxbx\frac{sin\,ax}{bx}) (ab\frac{a}{b})
ab\frac{a}{b} limax0\lim_{ax\rightarrow 0} (sinaxax\frac{sin\,ax}{ax}) [x\rightarrow0 \Rightarrow ax \rightarrow 0]
=ab×1\frac{a}{b}\times 1 [lim y\rightarrow0 sinyy\frac{sin\,y}{y} = 1]
= ab\frac{a}{b}